...
首页> 外文期刊>Physical Review. B, Condensed Matter >Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: Application to hCp Fe at high temperature and pressure
【24h】

Accurate and precise ab initio anharmonic free-energy calculations for metallic crystals: Application to hCp Fe at high temperature and pressure

机译:精确,准确的金属晶体从头算起的无谐波自由能计算:在高温高压下应用于hCp Fe

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A framework for computing the anharmonic free energy (FE) of metallic crystals using Born-Oppenheimer ab initio molecular dynamics (AIMD) simulation, with unprecedented efficiency, is introduced and demonstrated for the hcp phase of iron at extreme conditions (up to ≈290 GPa and 5000 K). The advances underlying this work are: (1) A recently introduced harmonically-mapped averaging temperature integration (HMA-TI) method that reduces the computational cost by order(s) of magnitude compared to the conventional TI approach. The TI path starts from zero Kelvin, where it assumes the behavior is given exactly by a harmonic treatment; this feature restricts application to systems that have no imaginary phonons in this limit. (2) A Langevin thermostat with the HMA-TI method that allows the use of a relatively large MD time step (4 fs, which is about eight times larger than the size needed for the Andersen thermostat) without loss of accuracy. (3) AIMD sampling is accelerated by using density functional theory (DFT) with a low-level parameter set, then the measured quantities of selected configurations are robustly reweighted to a higher level of DFT. This introduces a speedup of about 20-30 x compared to directly simulating the accurate system. (4a) The temperature (T) dependence of the hcp equilibrium shape (i.e., c/a axial ratio) is determined (including anharmonicity), with uncertainty less than ±0.001. (4b) Electronic excitation is included through Mermin's finite-temperature extension of the T=0 K DFT. A simple FE perturbation method is introduced to handle the difficulty associated with applying the TI method with a T-dependent geometry and (due to electronic excitation) potential-energy surface. (5) The FE in the thermodynamic limit is attained through extrapolation of only the (computationally inexpensive) quasiharmonic FE, because the anharmonic FE contribution has negligible finite-size effects. All methods introduced here do not affect the AIMD sampling—results are obtained through post-processing—so established AIMD codes can be employed without modification. Analytical formulas fitted to the results for the variation of the equilibrium c/a ratio and FE components with T are provided. Notably, effects of magnetic excitations are not included and may yet prove important to the overall FE; if so, it is plausible that such contributions can be added perturbatively to the FE values reported here. Notwithstanding these considerations, FE values are obtained with an estimated accuracy and precision of 2 meV/atom, suggesting that the capability to compute the phase diagram of iron at Earth's inner core conditions is within reach.
机译:引入并演示了使用Born-Oppenheimer从头算分子动力学(AIMD)模拟来计算金属晶体的非谐自由能(FE)的框架,该框架具有前所未有的效率,并在极端条件下(高达290 GPa左右)用于铁的hcp相和5000 K)。这项工作的基础是:(1)最近引入的谐波映射平均温度积分(HMA-TI)方法与传统的TI方法相比将计算成本降低了几个数量级。 TI路径从零开尔文(Kelvin)开始,在此假设行为是通过谐波处理精确给出的。此功能将应用程序限制在此范围内不具有虚子声子的系统。 (2)带有HMA-TI方法的Langevin恒温器,允许使用相对较大的MD时间步长(4 fs,大约是Andersen恒温器所需尺寸的八倍),而不会降低精度。 (3)通过使用带有低级参数集的密度泛函理论(DFT)来加速AIMD采样,然后将所选配置的测量数量稳健地加权到更高的DFT水平。与直接模拟准确的系统相比,这可带来约20-30倍的加速。 (4a)确定hcp平衡形状的温度(T)依赖性(即c / a轴向比)(包括非谐波),不确定度小于±0.001。 (4b)通过Mermin的T = 0 K DFT的有限温度扩展包括电子激发。引入了一种简单的有限元摄动方法来处理与将TI方法应用于T依赖的几何形状和(由于电子激发)势能表面相关的困难。 (5)热力学极限中的有限元是通过仅推算(准价格便宜)的准谐波有限元获得的,因为非谐有限元的影响有限。此处介绍的所有方法均不会影响AIMD采样-结果是通过后期处理获得的-因此可以使用已建立的AIMD代码而无需进行修改。提供了适合于平衡c / a比和FE分量随T变化的结果的分析公式。值得注意的是,磁激励的影响并未包括在内,可能对整个有限元分析很重要。如果是这样,则可以将这些贡献微扰地添加到此处报告的FE值上,这似乎是合理的。尽管有这些考虑,但获得的FE值的估计精度和精确度为2 meV /原子,这表明在地球内核条件下计算铁的相图的能力是可以达到的。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第1期|014117.1-014117.13|共13页
  • 作者单位

    Department of Chemical and Biological Engineering, University at Buffalo,The State University of New York, Buffalo, New York 14260-4200, USA;

    Department of Chemical and Biological Engineering, University at Buffalo,The State University of New York, Buffalo, New York 14260-4200, USA;

    Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA;

    Department of Chemical and Biological Engineering, University at Buffalo,The State University of New York, Buffalo, New York 14260-4200, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号