...
首页> 外文期刊>Physical review, B >Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states
【24h】

Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states

机译:磁性拓扑绝缘体MNBI6Te10,具有零场铁磁状态和螺纹狄拉克表面状态

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetic topological insulators (TIs) with nontrivial topological electronic structure and broken time-reversal symmetry exhibit various exotic topological quantum phenomena. The realization of such exotic phenomena at high temperature is one of the central topics in this area. We reveal that MnBi6Te10 is a magnetic TI with an antiferromagnetic ground state below 10.8 K whose nontrivial topology is manifested by Dirac-like surface states. The ferromagnetic axion insulator state with Z(4) = 2 emerges once spins are polarized at a field as low as 0.1 T, accompanied with saturated anomalous Hall resistivity up to 10 K. Such a ferromagnetic state is preserved even with an external field down to zero at 2 K. Theoretical calculations indicate that the fewlayer ferromagnetic MnBi6Te10 is also topologically nontrivial with a nonzero Chern number. Angle-resolved photoemission spectroscopy experiments further reveal three types of Dirac surface states arising from different terminations on the cleavage surfaces, one of which has insulating behavior with an energy gap of similar to 28 meV at the Dirac point. These outstanding features suggest that MnBi6Te10 is a promising system to realize various topological quantum effects at zero field and high temperature.
机译:磁性拓扑绝缘体(TIS)具有非拓扑电子结构和破裂的时间反转对称性表现出各种外来拓扑量子现象。在高温下实现这种异国现象是该地区的中心主题之一。我们揭示了Mnbi6te10是磁性Ti,其反铁磁场态以下10.8 k,其非增长拓扑结构由狄拉氏表面状态表现出。用Z(4)= 2的铁磁轴绝缘子态一旦旋转在低至0.1t的场上偏振,伴随着饱和的异常霍尔电阻率,高达10k。即使使用外部场达到这样的铁磁状态也被保留在一起零在2 k。理论计算表明,然而,少数铁磁Mnbi6te10也与非零号码拓扑非拓扑。角度分辨的光曝光光谱实验进一步揭示了来自裂解表面上不同终端产生的三种类型的狄拉克表面状态,其中一个具有与狄拉氏点相似的能隙的绝缘行为。这些突出的特点表明Mnbi6te10是一个有希望的系统,以实现零场和高温的各种拓扑量子效应。

著录项

  • 来源
    《Physical review, B》 |2020年第3期|共7页
  • 作者单位

    Rennin Univ China Dept Phys Beijing 100872 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Stanford Univ Dept Mat Sci &

    Engn Stanford CA 94305 USA;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Rennin Univ China Dept Phys Beijing 100872 Peoples R China;

    Rennin Univ China Dept Phys Beijing 100872 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Univ Tokyo Inst Solid State Phys Kashiwa Chiba 2778581 Japan;

    Univ Tokyo Inst Solid State Phys Kashiwa Chiba 2778581 Japan;

    Univ Tokyo Inst Solid State Phys Kashiwa Chiba 2778581 Japan;

    Lund Univ MAX Lab 4 POB 118 S-22100 Lund Sweden;

    Lund Univ MAX Lab 4 POB 118 S-22100 Lund Sweden;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Chinese Acad Sci Beijing Natl Lab Condensed Matter Phys Beijing 100190 Peoples R China;

    Rennin Univ China Dept Phys Beijing 100872 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 固体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号