首页> 外文期刊>Physical review, B >Incorporation of random alloy GaBixAs1-x barriers in InAs quantum dot molecules: Energy levels and confined hole states
【24h】

Incorporation of random alloy GaBixAs1-x barriers in InAs quantum dot molecules: Energy levels and confined hole states

机译:在INAS量子点分子中掺入随机合金GabixAS1-X屏障:能级和限制孔状态

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Self-assembled InAs quantum dots (QDs), which have long hole-spin coherence times and are amenable to optical control schemes, have long been explored as building blocks for qubit architectures. One such design consists of vertically stacking two QDs to create a QD molecule (QDM) and using the spin-mixing properties of "moleculelike" coupled hole states for all-optical qubit manipulation. In this paper, the first of two papers, we introduce the incorporation of dilute GaBixAs1-x alloys in the barrier region between the two dots. GaBixAs1-x is expected to increase the spin mixing of the molecular states needed for qubit operations by raising the barrier valence-band edge and spin-orbit splitting. Using an atomistic tight-binding model, we compute the properties of GaBixAs1-x and the modification of hole states that arise when the alloy is used in the barrier of an InAs QDM. An atomistic treatment is necessary to correctly capture nontraditional alloy effects such as the band-anticrossing valence band. It also allows for the study of configurational variances and clustering effects of the alloy. We find that in InAs QDMs with a GaBiAs interdot barrier, electron states are not strongly affected by the inclusion of Bi. However, hole states are much more sensitive to the presence and configuration of Bi in the barriers. By independently studying the alloy-induced strain and electronic scattering off Bi and As orbitals, we conclude that an initial increase in QDM hole-state energy at low Bi concentration is caused by the alloy-induced strain. We further find that the decrease in QDM hole energy at higher Bi concentrations can only be explained when both alloy strain and orbital effects are considered. In our second paper, we use the understanding developed here to discuss how the alloyed barriers contribute to enhancement in hole spin-mixing and the implications for QDM qubit architectures.
机译:自组装的INAS量子点(QDS)具有长孔 - 旋转相干时间,并且可用于光学控制方案,长期以来一直被探索为Qubit架构的构建块。一种这样的设计包括垂直堆叠两个QD以创建QD分子(QDM)并使用“分子细胞”耦合孔状态的旋转混合特性进行全光Qubit操纵。本文是两篇论文中的第一个,我们介绍了两个点之间的势垒区域中的稀释gabixAs1-x合金。预计GabixAs1-X将通过提高阻挡价带边缘和旋转轨道分裂来增加Qubit操作所需的分子状态的旋转混合。使用原子的紧密绑定模型,我们计算GabixAs1-x的性质以及当合金在INAS QDM的屏障中使用时出现的孔状态的变形例。必须进行原子的处理以正确捕获非传统合金效应,例如带抵抗价频带。它还允许研究合金的配置方差和聚类效果。我们发现,在INAS QDMS具有Gabias interdot屏障中,电子国家不会受到纳入BI的强烈影响。然而,孔状态对障碍中BI的存在和配置更敏感。通过独立地研究合金诱导的菌株和电子散射关闭BI和轨道,我们得出结论,低BI浓度下QDM孔状态能量的初始增加是由合金诱导的应变引起的。我们进一步发现,只有考虑合金应变和轨道效应,才能解释较高的BI浓度下的QDM孔能量的降低。在我们的第二篇论文中,我们利用此处开发的理解讨论合金障碍如何为孔旋转混合的增强以及对QDM Qubit架构的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号