...
首页> 外文期刊>Physics Letters, A >A maser based on dynamical backaction on microwave light
【24h】

A maser based on dynamical backaction on microwave light

机译:一种基于微波灯动力学备用的蒙皮

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The work of Braginsky introduced radiation pressure dynamical backaction, in which a mechanical oscillator that is parametrically coupled to an electromagnetic mode can experience a change in its rigidity and it's damping rate. The finite cavity electromagnetic decay rate can lead to either amplification or cooling of the mechanical oscillator, and lead in particular to a parametric oscillatory instability, associated with regenerative oscillations of the mechanical oscillator, an effect limiting the circulating power in laser gravitational wave interferometers. These effects implicitly rely on an electromagnetic cavity whose dissipation rate vastly exceeds that of the mechanical oscillator, a condition naturally satisfied in most optomechanical systems. Here we consider the opposite limit, where the mechanical dissipation is engineered to dominate over the electromagnetic one, essentially reversing role of electromagnetic and mechanical degree of freedom. As a result, the electromagnetic field is now subject to dynamical backaction: the mechanical oscillator provides a feedback mechanism which modifies the damping rate of the electromagnetic cavity. We describe this phenomenon in the spirit of Braginsky's original description, invoking finite cavity delay and highlighting the role of dissipation. Building on previous experimental work, we demonstrate this dynamical backaction on light in a superconducting microwave optomechanical circuit. In particular, we drive the system above the parametric instability threshold of the microwave mode, leading to maser action and demonstrate injection locking of the maser, which stabilizes its frequency and reduces its noise. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
机译:Braginsky引入的辐射压力动力学备用的工作,其中参数耦合到电磁模式的机械振荡器可以体验其刚性的变化和它的阻尼率。有限腔电磁衰减速率可以导致机械振荡器的放大或冷却,特别是与机械振荡器的再生振荡相关联的参数振荡不稳定性,这是限制激光重力波干涉仪中的循环功率的效果。这些效果隐含地依赖于电磁腔,其耗散速率大大超过机械振荡器,在大多数光学机械系统中自然满足的条件。在这里,我们考虑相反的极限,其中机械耗散被设计成支配在电磁1上,基本上反转电磁和机械自由度的作用。结果,电磁场现在受到动态留下的影响:机械振荡器提供反馈机构,其改变电磁腔的阻尼速率。我们在布拉克斯基的原始描述中描述了这种现象,调用有限腔延迟并突出耗散的作用。在以前的实验工作上建立,我们在超导微波机械电路中展示了在光中的电动备份。特别地,我们将系统驱动到微波模式的参数不稳定性阈值上方,导致蒙皮动作并演示蒙皮的注射锁定,这使其频率稳定并降低其噪声。 (c)2017年作者。由elsevier b.v发布。这是CC By-NC-ND许可下的开放式访问文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号