首页> 外文期刊>Physical chemistry chemical physics: PCCP >Perfluoroolefin complexes versus perfluorometallacycles and perfluorocarbene complexes in cyclopentadienylcobalt chemistry
【24h】

Perfluoroolefin complexes versus perfluorometallacycles and perfluorocarbene complexes in cyclopentadienylcobalt chemistry

机译:全氟烯烃复合物与全氟胺相金属和全氟化萘硅酸钴化学中的全氟化物络合物

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Fluorocarbons have been shown experimentally by Baker and coworkers to combine with the cyclopentadienylcobalt (CpCo) moiety to form fluoroolefin and fluorocarbene complexes as well as fluorinated cobaltacyclic rings. In this connection density functional theory (DFT) studies on the cyclopentadienylcobalt fluorocarbon complexes CpCo(L)(CnF2n) (L = CO, PMe3; n = 3 and 4) indicate structures with perfluoroolefin ligands to be the lowest energy structures followed by perfluorometallacycle structures and finally by structures with perfluorocarbene ligands. Thus, for the CpCo(L)(C3F6) (L = CO, PMe3) complexes, the perfluoropropene structure has the lowest energy, followed by the perfluorocobaltacyclobutane structure and the perfluoroisopropylidene structure less stable by 8 to 11 kcal mol(-1), and the highest energy perfluoropropylidene structure less stable by more than 12 kcal mol(-1). For the two metal carbene structures Cp(L)Co;C(CF3)(2) and Cp(L)Co;CF(C2F5), the former is more stable than the latter, even though the latter has Fischer carbene character. For the CpCo(L)(C4F8) (L = CO, PMe3) complexes, the perfluoroolefin complex structures have the lowest energies, followed by the perfluorometallacycle structures at 10 to 20 kcal mol(-1), and the structures with perfluorocarbene ligands at yet higher energies more than 20 kcal mol(-1) above the lowest energy structure. This is consistent with the experimentally observed isomerization of the perfluorinated cobaltacyclobutane complexes CpCo(PPh2Me)(-CFR-CF2-CF2-) (R = F, CF3) to the perfluoroolefin complexes CpCo(PPh2Me)(RCF;CF2) in the presence of catalytic quantities of HN(SO2CF3)(2). Further refinement of the relative energies by the state-of-the-art DLPNO-CCSD(T) method gives results essentially consistent with the DFT results summarized above.
机译:通过贝克和工友通过实验显示碳氟化碳,与环戊二烯基钴(CPCO)部分合并以形成氟代烯烃和氟碳烯络合物以及氟化钴环环。在这种相关的密度函数理论(DFT)上研究环戊二烯基钴氟碳络合物CpCo(L)(CNF2N)(L = Co,PME3; n = 3和4)表示具有全氟烯烃配体的结构,是全氟素结构的最低能量结构最后通过具有全氟丙烯配体的结构。因此,对于CPCO(L)(C3F6)(L = CO,PME 3)配合物,全氟丙烯结构具有最低能量,其次是全氟钴钴丁烷结构和全氟异丙基结构较低8至11kcal摩尔(-1),并且最高能量全氟丙烯结构较低稳定,超过12kcal摩尔(-1)。对于两种金属卡贝尔结构CP(L)CP(L)CO; C(CF3)(2)和CP(L)CO; CF(C2F5),前者比后者更稳定,即使后者有富雪茄卡贝特。对于CPCO(L)(C4F8)(L = CO,PME3)复合物,全氟烯烃复合结构具有最低的能量,其次是10至20kcal摩尔(-1)的全氟量结构,以及具有全氟丙烯苯配体的结构然而,高于最低能量结构的20kcal摩尔(-1)的更高的能量。这与实验观察到全氟化钴键合络合物CPCO(PPH2ME)( - CFR-CF2-CF2-)(R = F,CF3)的异构化在存在下的全氟烯烃复合物CPCO(PPH2ME)(RCF; CF2)中的异构化。 HN(SO2CF3)(2)的催化量。通过最先进的DLPNO-CCSD(T)方法进一步改进相对能量,使结果与上面概括的DFT结果一致。

著录项

  • 来源
  • 作者单位

    South China Normal Univ Ctr Computat Quantum Chem Sch Chem Key Lab Theoret Chem Environm Minist Educ Guangzhou 510006 Peoples R China;

    South China Normal Univ Ctr Computat Quantum Chem Sch Chem Key Lab Theoret Chem Environm Minist Educ Guangzhou 510006 Peoples R China;

    Univ Georgia Dept Chem Athens GA 30602 USA;

    Univ Georgia Dept Chem Athens GA 30602 USA;

    Univ Georgia Dept Chem Athens GA 30602 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号