...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >A revisit of the interaction of gaseous ozone with aqueous iodide. Estimating the contributions of the surface and bulk reactions
【24h】

A revisit of the interaction of gaseous ozone with aqueous iodide. Estimating the contributions of the surface and bulk reactions

机译:碘化物水溶液臭氧相互作用的重新求解。 估算表面和散装反应的贡献

获取原文
获取原文并翻译 | 示例

摘要

The main source of atmospheric iodine is the heterogeneous reaction of aqueous iodide (I-) with ozone (O-3), which takes place in surface seawater and probably in sea-salt aerosols. However, there are seemingly contradictory conclusions about whether this heterogeneous reaction occurs in the bulk of the aqueous phase, via O-3 dissolution, or at the aqueous surface, via O-3 adsorption. In this work, the ozone uptake coefficient has been calculated as a function of the concentration of aqueous iodide ([I-](aq)) and gaseous ozone near the aqueous surface ([O-3](gs)) by estimating parameters of the resistor model using results of previous studies. The calculated uptake coefficients suggest that the aqueous-phase reaction dominates at low I- concentrations (about 10(-4) mol L-1), regardless of [O-3](gs), and also at sufficiently high [O-3](gs) (about 80 ppm), regardless of [I-](aq). In contrast, the surface reaction dominates at high [I-](aq) (about 10(-4) mol L-1) as long as [O-3](gs) is low enough (about 80 ppm). This trend is able to reconcile previous studies of this reaction, and is a consequence of several factors, including the high surface excess of both reactants ozone and iodide. Given the typical O-3 concentrations in the troposphere and the possible I- concentrations and O-3 solubilities in sea-salt aerosols, the surface reaction may compete with the aqueous-phase reaction in accumulation-mode aerosols, unlike in surface seawater, where the aqueous-phase reaction probably prevails. The rate constant of the surface reaction has been estimated as (3-40) x 10(-13) cm(2) molecule(-1) s(-1).
机译:大气碘的主要来源是碘化含臭氧(I-)的异质反应(I- 3),其在表面海水中进行,并且可能在海盐气溶胶中。然而,看似矛盾的结论是关于该非均相反应是否在水溶液中发生在水溶液中,通过O-3溶解或水性表面,通过O-3吸附。在这项工作中,通过估计参数来计算臭氧摄取系数作为水性表面([O-3](GS)附近的碘化碘化物([I-](AQ))和气态臭氧的函数。电阻模型使用先前研究的结果。计算的摄取系数表明水相反应在低I-浓度下占主导地位(约10(-4)摩尔L-1),无论[O-3](GS),也足够高[o -3](GS)(约& 80 ppm),无论何种[i - ](aq)。相反,表面反应在高[I-](AQ)(约10(-4)摩尔L-1)下占主导地位,只要[O-3](GS)足够低(约80 ppm )。这种趋势能够协调对该反应的先前研究,并且是几种因素的结果,包括反应物臭氧和碘的高表面过量。鉴于对流层中的典型O-3浓度和海盐气溶胶中可能的I-浓度和O-3溶解度,表面反应可能与积聚模式气溶胶中的水相反应竞争,与地面海水不同,在哪里水相反应可能是普遍的。表面反应的速率常数估计为(3-40)×10(-13)cm(2)分子(-1)s(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号