首页> 外文学位 >Surface layer ozone dynamics and air-snow interactions at Summit, Greenland. Spring and summer ozone exchange velocity and snowpack ozone: The complex interactions.
【24h】

Surface layer ozone dynamics and air-snow interactions at Summit, Greenland. Spring and summer ozone exchange velocity and snowpack ozone: The complex interactions.

机译:格陵兰萨米特峰的表层臭氧动力学和雪雪相互作用。春季和夏季臭氧交换速度和积雪臭氧:复杂的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

In recent decades, the Arctic has witnessed startling environmental changes prompting concerns about the Arctic climate system, which in turn, could amplify climate change on a global scale. In recent years, studies have provided evidence that important chemical gas exchanges occur between the polar snowpack and the atmosphere, and that sunlit snow is one of the most photochemically- and oxidatively-active regions of the entire troposphere.; The overarching goal of this research is to study the interaction of atmospheric ozone with the permanent snowpack based on flux-tower measurements at Summit, Greenland. The ozone exchange [Ve(O3)] above the snow surface is not a simple constant value as climate models assume, but is highly dependent on environmental conditions (e.g., solar radiation, wind speed, atmospheric stability) and on the snowpack chemistry (e.g., nitrogen oxides, formaldehyde).; Throughout the spring, positive and negative values for Ve(O3) were observed and vertical flux divergence was negligible. During the summer, Ve(O3) exhibited a noticeable diurnal variation, where statistically significant downward/positive Ve(O3) occurred in the afternoon hours (starting around solar noon). A distinct vertical flux divergence with height also occurred during the same period, suggesting ozone production above the snow.; Meanwhile, snowpack ozone concentration showed a distinct diurnal depletion/recovery cycle, much stronger during summer than spring. This cycle, primarily affected by solar radiation penetrating the upper snowpack layer, indicates that photochemical ozone loss mechanisms are likely active and their intensities are season-dependent. In addition, the seasonal change in temperature gradients showed that the snowpack is dramatically more affected than the atmosphere itself, leading to speculation on (a) chemistry occurring in the quasi-liquid layer around snow grains and (b) thermal gas adsorption/desportion.; While the dynamics of snowpack ozone and surface layer ozone should be correlated, the complex dynamical processes are not yet clearly identifiable. Nonetheless, these analyses showed that (a) snowpack ozone is depleted by either photochemical and/or physical processes and (b) atmospheric ozone above the snow surface possibly results from the peroxy-nitrogen cycle.
机译:在最近几十年中,北极见证了令人震惊的环境变化,引发了人们对北极气候系统的担忧,而北极气候系统又可能在全球范围内加剧气候变化。近年来,研究提供了证据,表明极地积雪与大气之间发生了重要的化学气体交换,并且日照的积雪是整个对流层中最具有光化学和氧化活性的区域之一。这项研究的总体目标是基于格陵兰萨米特的通量塔测量研究大气臭氧与永久积雪的相互作用。雪面上方的臭氧交换[Ve(O3)]不是气候模型所假设的简单恒定值,而是高度取决于环境条件(例如,太阳辐射,风速,大气稳定性)和雪堆化学性质(例如, ,氮氧化物,甲醛);在整个春季,观测到Ve(O3)的正值和负值,并且垂直通量的发散可忽略不计。在夏季,Ve(O3)表现出明显的昼夜变化,其中下午下午(从太阳正午开始)发生统计上显着的向下/正向的Ve(O3)。在同一时期,垂直高度的垂直通量也发散了,表明在雪上方产生了臭氧。同时,积雪中的臭氧浓度表现出明显的昼间耗竭/恢复周期,夏季比春季强得多。这个周期主要受到穿透上积雪层的太阳辐射的影响,表明光化学臭氧损失机制可能很活跃,其强度取决于季节。此外,温度梯度的季节性变化表明,积雪比大气本身受到的影响要大得多,这导致人们对(a)雪粒周围的准液体层中发生的化学反应以及(b)热气体的吸附/迁移产生了推测。 ;尽管应该将积雪臭氧和表层臭氧的动力学联系起来,但尚不清楚复杂的动力学过程。尽管如此,这些分析表明,(a)雪堆中的臭氧通过光化学和/或物理过程被消耗掉了;(b)雪表面上方的大气臭氧可能是由于过氧-氮循环而产生的。

著录项

  • 作者

    Bocquet, Florence.;

  • 作者单位

    University of Colorado at Boulder.$bProgram in Atmospheric and Oceanic Sciences.;

  • 授予单位 University of Colorado at Boulder.$bProgram in Atmospheric and Oceanic Sciences.;
  • 学科 Atmospheric Sciences.; Environmental Sciences.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境科学基础理论;
  • 关键词

  • 入库时间 2022-08-17 11:38:59

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号