首页> 外文期刊>Physical chemistry chemical physics: PCCP >Mechanism and kinetics for both thermal and electrochemical reduction of N-2 catalysed by Ru(0001) based on quantum mechanics
【24h】

Mechanism and kinetics for both thermal and electrochemical reduction of N-2 catalysed by Ru(0001) based on quantum mechanics

机译:基于量子力学的Ru(0001)催化N-2的热电化和电化学减少的机理和动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The conversion of N-2(g) to NH3(g) is an important industrial process that plays a vital role in sustaining the current human population. This chemical transformation relies heavily on the Haber-Bosch process (N-2 thermal reduction, N2TR), which requires enormous quantities of energy (2% of the world supply) and extreme conditions (200 atm and 500 degrees C). Alternatively, N-2(g) can be reduced to NH3(g) through electrochemical means (N2ER), which may be a less energy intensive and lower-capital approach since the H atoms come from H2O not H-2. However, N2ER efficiency is far from satisfactory. In order to provide the basis for developing a new generation of energy efficient processes, we report the detailed atomistic mechanism and kinetics for N2ER on Ru(0001) along with a comparison to N2TR. We obtained these results using a new electrochemical model for quantum mechanics (QM) calculations to obtain free energy surfaces for all plausible reaction pathways for N2ER under a constant electrode potential of 0.0 V-SHE. For both processes, the elementary steps involve several steps of breaking of the NN bonds, hydrogenation of surface N2HX or NHX, and NH3 release. We find similar energetics for the NN cleavage steps for both systems. However, the hydrogenation steps are very different, leading to much lower free energy barriers for N2ER compared to N2TR. Thus, N2ER favors an associative route where successive hydrogen atoms are added to N-2 prior to breaking the NN bonds rather than the dissociative route preferred by N2TR, where the NN bonds are broken first followed by the addition of Hs. Our QM results provide the detailed free energy surfaces for N2ER and N2TR, suggesting a strategy for improving the efficiency of N2ER.
机译:N-2(g)至NH3(g)的转化是一个重要的工业过程,在维持目前的人口方面发挥着重要作用。这种化学转化严重依赖于Haber-Bosch工艺(N-2热还原,N2TR),这需要巨大的能量(占世界供给的2%)和极端条件(200atm和500℃)。或者,通过电化学装置(N2er)可以将N-2(G)降低至NH 3(G),这可能是较低的能量密集和低写的方法,因为H原子来自H2O而不是H-2。然而,N2er效率远非令人满意。为了提供开发新一代能量有效过程的基础,我们向Ru(0001)上的N2er进行了详细的原子制造机制和动力学以及与N2TR的比较。我们使用用于量子力学(QM)计算的新电化学模型获得了这些结果,以在0.0V-SH的恒定电极电位下获得N2er的所有合理的反应途径的自由能表面。对于这两种方法,基本步骤涉及若干步骤破碎NN键,表面N 2 HL或NHX的氢化和NH3释放。我们为这两个系统的NN裂解步骤找到了类似的能量学。然而,与N2TR相比,氢化步骤非常不同,导致N2er的无自由能屏障。因此,N2ER在破坏NN键之前在打破NN键之前将连续氢原子添加到N-2中的缔合途径,而不是通过N2TR优选的离灭路线,其中首先被添加NN键,然后加入HS。我们的QM结果为N2ER和N2TR提供了详细的自由能表面,表明了提高N2er效率的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号