...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne-2 dimer and Ne-Ne adduct formation reaction Ne plus Ne-doped nanodroplet
【24h】

Quantum-classical approach to the reaction dynamics in a superfluid helium nanodroplet. The Ne-2 dimer and Ne-Ne adduct formation reaction Ne plus Ne-doped nanodroplet

机译:超氟氦纳米杆纳米杆纳米杆纳米杆的反应动力学的量子古典方法。 NE-2二聚体和NE-NE加合物形成反应NE加上NE掺杂的纳米射频

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of the Ne-2 dimer and Ne-Ne adduct formation in a superfluid helium nanodroplet [(He-4)(N); T = 0.37 K], Ne + Ne@(He-4)(N) -> Ne-2@(He-4)(N ')/Ne-Ne@(He-4)(N ') + (N-N ')He-4 with N = 500, has been investigated using a hybrid approach (quantum and classical mechanics (QM-CM) descriptions for helium and the Ne atoms, respectively) and taking into account the angular momentum of the attacking Ne atom, Ne-(1). Comparison with zero angular momentum QM results of our own shows that the present results are similar to the quantum ones for the initial Ne-(1) velocities (v(0)) of 500 and 800 m s(-1) (the former one being the most probable velocity of Ne at 300 K), in all cases leading to the Ne-2 dimer (r(e) = 3.09 angstrom). However, significant differences appear below v(0) = 500 m s(-1), because in the QM-CM dynamics, instead of the dimer, a Ne-Ne adduct is formed (r(0) = 5.45 angstrom). The formation of this adduct will probably dominate as the contribution to reactivity of angular momenta larger than zero is the leading one and angular momentum strongly acts against the Ne-2 production. Angular momentum adds further difficulties in producing the dimer, since it makes it more difficult to remove the helium density between both Ne atoms to lead, subsequently, to the Ne-2 molecule. Hence, the formation of the neon-neon adduct, Ne-Ne@(He-4)(N '), clearly dominates the reactivity of the system, which results in the formation of a "quantum gel"/"quantum foam", because the two Ne atoms essentially maintain their identity inside the nanodroplet. Large enough Ne-(1) initial angular momentum values can induce the formation of vortex lines by the collapse of superficial excitations (ripplons), but they occur with greater difficulty than in the case of the capture of the Ne atom by a non doped helium nanodroplet, due to the wave interferences induced by the Ne induced by the solvation layers of the Ne atom originally placed inside the nanodroplet. We hope that this work will encourage other researchers to investigate the reaction dynamics in helium nanodroplets, an interesting topic on which there are few studies available.
机译:对NE-2二聚体和Ne氖加合物形成的在超流体氦纳米液滴(HE-4)(N)的动力学[; T = 0.37 K],氖+氖@(HE-4)(N) - >的Ne-2 @(HE-4)(N ')/ NE-氖@(HE-4)(N')+(NN “)HE-4具有N = 500,一直采用的混合方法(量子和经典力学(QM-CM)描述为氦和氖的原子,分别地),并考虑到对方氖原子的角动量的调查, Nε - (1)。与我们自己的节目角动量为零,QM结果可知,本发明的结果是类似于量子那些用于初始NE-的比较(1)速度的500个800毫秒(-1)(前一个是(V(0))氖的在300K的最可能的速度),在导致对NE-2二聚体(R(e)中所有的情况下= 3.09埃)。然而,显著差异似乎低于V(0)= 500米每秒(-1),因为在QM-CM动力学,而不是二聚体,氖 - 氖加合物形成(R(0)= 5.45埃)。这种加合物的形成将可能支配,以角动量大于零的反应性的贡献是领先的一个和角动量强烈作用于氖-2产生。角动量增加了生产二聚体进一步的困难,因为它使得它更难以给两个氖原子之间去除氦密度铅,随后,到NE-2分子。因此,氖氖加合物,氖 - 氖@(HE-4)(N“)的形成,明显主导系统的反应性,这导致‘量子凝胶’/‘量子泡沫’的形成,因为两个氖原子基本上保持纳米液滴内自己的身份。足够大的Nε - (1)初始角动量的值可诱导的涡流线由浅激励(ripplons)的崩溃的形成,但它们由非掺杂氦发生与更大的困难比氖原子的捕获的情况下纳米液滴,由于由氖原子的溶剂化层中感应的感应氖波干扰最初放置的纳米液滴的内部。我们希望,这项工作将鼓励其他研究人员调查了反应动力学氦纳米滴,其上有可用的一些研究一个有趣的话题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号