首页> 外文期刊>Physics in medicine and biology. >A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.
【24h】

A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

机译:用于3D数字减法血管造影数据的2D驱动3D血管分割算法。

获取原文
获取原文并翻译 | 示例
       

摘要

Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.
机译:脑血管病是西部工业国家的主要死因之一。 3D旋转血管造影提供有关血管形态和病理学的必不可少的信息。医生利用这一点来分析血管几何形状,即血管直径,动脉瘤的位置和大小,提出临床决策。 3D分割是该管道的重要步骤。虽然如今可以使用许多不同的方法,但是所有这些方法都缺乏验证个体患者的结果的方法。因此,我们提出了一种新的2D数字减法血管造影(DSA)驱动的3D血管分割和验证框架。当涉及到动脉瘤的血管直径或颈部尺寸时,将2D DSA投影临床上被视为金标准。应用椭圆体血管模型来提供初始3D分段。为了评估3D血管分割的准确性,其前向突起与相应的2D DSA投影迭代地覆盖。本地血管差异是由全局2D / 3D优化功能建模的,以将3D血管分段调整为2D血管轮廓。我们的框架已在幻像数据以及十个患者数据集上进行评估。每个数据集使用来自不同视角的三个2D DSA投影。新颖的2D驱动3D血管分割方法显示出卓越的结果,例如生长的区域,即芯片系数的精度和5.8%点的提高7.2%。该方法开辟了未来需要最大血管准确性的临床应用,例如,计算流体动力学建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号