首页> 外文期刊>Physics in medicine and biology. >Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies
【24h】

Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies

机译:深脑刺激植入物用于电磁MRI安全研究的现实建模

获取原文
获取原文并翻译 | 示例
           

摘要

We propose a framework for electromagnetic (EM) simulation of deep brain stimulation (DBS) patients in radiofrequency (RF) coils. We generated a model of a DBS patient using post-operative head and neck computed tomography (CT) images stitched together into a 'virtual CT' image covering the entire length of the implant. The body was modeled as homogeneous. The implant path extracted from the CT data contained self-intersections, which we corrected automatically using an optimization procedure. Using the CT-derived DBS path, we built a model of the implant including electrodes, helicoidal internal conductor wires, loops, extension cables, and the implanted pulse generator. We also built four simplified models with straight wires, no extension cables and no loops to assess the impact of these simplifications on safety predictions. We simulated EM fields induced by the RF birdcage body coil in the body model, including at the DBS lead tip at both 1.5 Tesla (64 MHz) and 3 Tesla (123 MHz). We also assessed the robustness of our simulation results by systematically varying the EM properties of the body model and the position and length of the DBS implant (sensitivity analysis). The topology correction algorithm corrected all self-intersection and curvature violations of the initial path while introducing minimal deformations (open-source code available at http://ptx.martinos.org/index.php/Main_Page). The unaveraged lead-tip peak SAR predicted by the five DBS models (0.1 mm resolution grid) ranged from 12.8 kW kg(-1) (full model, helicoidal conductors) to 43.6 kW kg(-1) (no loops, straight conductors) at 1.5 T (3.4-fold variation) and 18.6 kW kg(-1) (full model, straight conductors) to 73.8 kW kg(-1) (no loops, straight conductors) at 3 T (4.0-fold variation). At 1.5 T and 3 T, the variability of lead-tip peak SAR with respect to the conductivity ranged between 18% and 30%. Variability with respect to the position and length of the DBS implant ranged between 9.5% and 27.6%.
机译:我们为射频(RF)线圈中的深脑刺激(DBS)患者的电磁(EM)模拟提出了一种框架。我们使用操作后的头部和颈部计算机断层扫描(CT)图像生成DBS患者的模型,它们一起被缝合到覆盖植入物的整个长度的“虚拟CT”图像中。身体被建模为均匀。从CT数据中提取的植入路径包含自交叉点,我们使用优化过程自动校正。使用CT衍生的DBS路径,我们构建了植入物的型号,包括电极,螺旋内导线,环,延伸电缆和植入脉冲发生器。我们还建立了四个简化型号,直线,无延伸电缆,无需循环来评估这些简化对安全预测的影响。我们模拟了由射频鸟笼体线圈引起的EM场,包括在1.5特斯拉(64MHz)和3特斯拉(123MHz)的DBS引线尖端处。我们还通过系统地改变身体模型的EM性能和DBS植入物(敏感性分析)的位置和长度来评估模拟结果的鲁棒性。拓扑校正算法纠正了初始路径的所有自交叉和曲率违规,同时引入最小变形(在http://ptx.martinos.org/index.php/main_page上提供的开源代码)。由五个DBS型号(0.1mm分辨率网格)预测的未达到的引线尖峰SAR从12.8千瓦千克(-1)(全型号,螺旋导线)到43.6 kW kg(-1)(无环,直导体)在1.5 t(3.4倍)和18.6 kW kg(-1)(完整型号,直导体)至73.8 kW kg(-1)(无环,直导体),在3 t(4.0倍))。在1.5吨和3℃下,引线尖峰SAR相对于电导率的可变性范围为18%至30%。关于DBS植入物的位置和长度的可变性范围为9.5%和27.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号