首页> 外文期刊>Sensors and Actuators, A. Physical >Stretchable strain sensors based on PDMS composites with cellulose sponges containing one- and two-dimensional nanocarbons
【24h】

Stretchable strain sensors based on PDMS composites with cellulose sponges containing one- and two-dimensional nanocarbons

机译:基于PDMS复合材料的可伸展应变传感器,含有单和二维纳米碳的纤维素海绵

获取原文
获取原文并翻译 | 示例

摘要

Here we present a new technique to create stretchable strain sensors by using porous cellulose composites with a low content of nanocarbon materials. In this method, highly porous cellulous microfibre sponges containing nanocarbon materials are first created by a freeze-drying method. The resullting cellulose sponges are highly conductive due to the spatial confinement of the reduced graphene oxide (rGO) or its hybrid with carbon nanofibers (CNFs) in the fibrous skeleton. Infiltrating this highly porous sponge with polydimethylsiloxane (PDMS) then creates a stretchable composite containing hierarchical conductive network with a very low loading of nanocarbons (similar to 0.1 wt% in the resultant PDMS composites). Experimental results reveal that the hybridisation of rGO with a small amount of CNFs increases the electrical conductivity and piezoresistive sensitivity of the composite sensor. Moreover, upon increasing the CNFs content (rGO:CNFs mass ratio varies from 1:0 to 1:1), the electrical conductivity increases up to 9.2 x 10(-3) S/m, the modulus increases while strength and elongation at break decrease, and the gauge factor increases initially from approximately 3.4 to 9.4 (at rGO:CNFs = 1:0.1) then decreases thereafter. When subjected to cyclic loading-unloading up to 10 000 cycles, the new composite sensors show excellent durability with very little drift over a large number of cycles. The piezoresistive response exhibits negligible strain-rate dependence up to 0.2 s(-1). Finally, an example is presented to highlight the potentials of the composite sensor as wearables in monitoring the movement of human joints, e.g., the bending of a finger joint. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这里,我们通过使用具有低含量纳米碳材料的多孔纤维素复合材料来提出一种新的技术来创建可拉伸应变传感器。在该方法中,首先通过冷冻干燥方法产生含有纳米碳材料的高孔梭毛微纤维海绵。由于纤维状骨架中的碳纳米纤维(CNFS)的空间限制,重复的纤维素海绵是由于纤维骨架中的碳纳米纤维(CNFS)的空间限制而导致的高导电性。用聚二甲基硅氧烷(PDMS)渗透这种高度多孔海绵,然后产生具有非常低的纳米碳的含有分层导电网络的可拉伸复合材料(类似于所得PDMS复合材料中的0.1wt%)。实验结果表明,具有少量CNF的Rgo杂交增加了复合传感器的电导率和压阻性灵敏度。此外,在增加CNFS含量(RGO:CNFS质量比从1:0到1:1之间变化)时,电导率增加到9.2×10(-3)S / m,模量增加,而断裂处的强度和伸长率减小,仪表因子最初从大约3.4到9.4增加(在RGO:CNFS = 1:0.1),然后此后减少。当循环加载卸载高达10 000个循环时,新的复合传感器显示出优异的耐用性,在大量循环中漂移很小。压阻性响应表现出可忽略的应变率依赖性,高达0.2 s(-1)。最后,提出了一个示例以突出显示复合传感器的电位作为监测人关节运动,例如手指接头的弯曲的可穿戴物。 (c)2018年elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号