...
首页> 外文期刊>RSC Advances >Ga-doped Ca12Al14O33 mayenite oxide ion conductors: synthesis, defects, and electrical properties
【24h】

Ga-doped Ca12Al14O33 mayenite oxide ion conductors: synthesis, defects, and electrical properties

机译:Ga-掺杂Ca12Al14O33莫甲酸盐离子导体:合成,缺陷和电性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Although mayenite Ca12Al14O33 has been known as an oxygen ion conductor for several decades, its relatively low oxide ion conductivity limits its applications in electrochemical devices. Thus, many efforts have been made by researchers, employing a doping strategy, in order to further improve its ionic conductivity, but with little success. In this work, a series of pure phase Ca12Al14-xGaxO33+delta (0 <= x <= 1.2) materials were synthesized by a traditional solid state reaction method. Scanning electron microscopy (SEM) combined with energy dispersion spectrum (EDS) analyses disclosed well-sintered ceramics with uniform Ga distributions. The defect formation energies for Ga replacing the two distinguishable Al1 and Al2 sites in Ca12Al14O33 calculated by static lattice atomistic simulation are nearly identical, similar to 3.03 and similar to 3.04 eV, respectively, consistent with the results of Rietveld refinements based on the XRD data, from which no preferred distribution of Ga on Al1 or Al2 site was observed. The electrical properties investigated by alternating current (AC) impedance spectroscopy show increased bulk conductivities for 0 <= x <= 0.4. Thus, here we present the first work that successfully improves the bulk oxide ion conductivity of Ca12Al14O33 by Ga-doping.
机译:虽然莫伦石Ca12Al14O33已知几十年来氧离子导体,但其相对低的氧化物离子电导率限制了其在电化学装置中的应用。因此,研究人员已经采用了掺杂策略,以进一步提高其离子电导率,而是成功的许多努力。在这项工作中,通过传统的固态反应方法合成了一系列纯相Ca12A114-XgaxO33 +Δ(0 <= x <= 1.2)。扫描电子显微镜(SEM)与能量分散谱(EDS)分析,分析了具有均匀GA分布的井烧结陶瓷。 GA替换通过静态晶格原子模拟计算的CA12AL14O33中的两个可区分AL1和AL2位点的缺陷形成能量几乎与3.03相同,与3.04eV相似,与基于XRD数据的RIETVELEDEMETEMENTEMENT,观察到Al1或Al2位点上没有Ga的优选分布。通过交流(AC)阻抗光谱研究的电特性显示出0 <= x <= 0.4的增加的体电导率。因此,在这里我们介绍了通过GA-掺杂成功提高Ca12A114O33的大量氧化物离子电导率的第一工作。

著录项

  • 来源
    《RSC Advances》 |2019年第7期|共7页
  • 作者单位

    Guilin Univ Technol MOE Key Lab New Proc Technol Nonferrous Met &

    Mat Guangxi Univ Key Lab Nonferrous Met Oxide Elect F Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

    Guilin Univ Technol MOE Key Lab New Proc Technol Nonferrous Met &

    Mat Guangxi Univ Key Lab Nonferrous Met Oxide Elect F Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

    Guilin Univ Technol MOE Key Lab New Proc Technol Nonferrous Met &

    Mat Guangxi Univ Key Lab Nonferrous Met Oxide Elect F Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

    Guilin Univ Technol MOE Key Lab New Proc Technol Nonferrous Met &

    Mat Guangxi Univ Key Lab Nonferrous Met Oxide Elect F Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

    Univ South Carolina Dept Chem Engn Columbia SC 29201 USA;

    Guilin Univ Technol MOE Key Lab New Proc Technol Nonferrous Met &

    Mat Guangxi Univ Key Lab Nonferrous Met Oxide Elect F Coll Mat Sci &

    Engn Guilin 541004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号