首页> 外文学位 >Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides
【24h】

Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

机译:缺陷和吸附的水膜对过渡金属氧化物的电,光和催化性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs.;The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to obtain a mechanistic understanding of the charge transfer process. We have developed a spectroscopic technique for studying vacancy defects in TMOs using near-infrared photoluminescence (NIR-PL) spectroscopy and showed that this technique is uniquely suited for studying defect-adsorbate interactions. In this work, a series of studies were carried out to elucidate the underlying structure-defect-property correlations of TMOs and their role in catalyzing electrical and electrochemical properties.;In the first study, we report a new type of electrical phase transition in p-type, non-stoichiometric nickel oxide involving a semiconductor-to-insulator-to-metal transition along with the complete change of conductivity from p- to n-type at room temperature induced by electrochemical Li+ intercalation. Direct observation of vacancy-ion interactions using in-situ NIR-PL show that the transition is a result of passivation of native nickel (cationic) vacancy defects and subsequent formation of oxygen (anionic) vacancy defects driven by Li+ insertion into the lattice. X-ray photoemission spectroscopy studies performed to examine the changes in the oxidation states of nickel due to defect interactions support the above conclusions.;In the second study, main effects of oxygen vacancy defects on the electronic and optical properties of V2O5 nanowires were studied using in-situ Raman, photoluminescence, absorption, and photoemission spectroscopy. We show that both thermal reduction and electrochemical reduction via Li+ insertion results in the creation of oxygen vacancy defects in the crystal that leads to band filling and an increase in the optical band gap of V2O5 from 1.95 eV to 2.45 eV, an effect known as the Burstein-Moss effect.;In the third study, we report a new type of semiconductor-adsorbed water interaction in metal oxides known as "electrochemical surface transfer doping," a phenomenon that has been previously been observed on hydrogen-terminated diamond, carbon nanotube, gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.
机译:过渡金属氧化物(TMO)构成了一大类材料,它们具有广泛的光学,电学,电化学,介电和催化特性,因此使它们成为下一代电子,光电子,催化,光子,能量存储和能量转换设备。 TMO的一些独特性质是它们在窄d或f壳的价电子之间存在的强电子电子相关性以及它们在各种氧化态下存在的能力。这为TMO提供了众多引人入胜的电子和其他物理属性。 TMO的许多显着特性来自氧化物表面/电化学氧化还原物种界面的复杂表面电荷转移过程和非化学计量,这归因于晶格空位的存在,这些空位可能对材料的电子结构产生重大干扰。化学计量,金属中心的氧化态和晶格空位缺陷都在影响TMO的物理性质,电子结构,器件性能和其他功能性质方面起着重要作用。但是,它们之间的基本关系尚不清楚。例如,被吸附物和缺陷之间的电子交换会导致现有缺陷状态的钝化或新缺陷的形成,这两者都会影响缺陷平衡,进而影响功能特性。深入了解晶格缺陷对TMO的电,催化和光学性能的作用,对于进一步扩展基于TMO的器件的技术应用至关重要。这项工作的重点是阐明空位缺陷与TMO中各种电化学吸附物之间的相互作用。;在操作数条件下直接探测空位缺陷与气相和液相物种之间相互作用的能力是获得机械机理的高度期望费用转移过程。我们已经开发了一种使用近红外光致发光(NIR-PL)光谱技术研究TMO中空位缺陷的光谱技术,并表明该技术非常适合研究缺陷-吸附物相互作用。在这项工作中,进行了一系列研究,以阐明TMO的潜在结构-缺陷-性质相关性及其在催化电和电化学性质中的作用。;在第一个研究中,我们报道了p中一种新型的电相转变。型非化学计量的氧化镍,涉及由半导体到绝缘体到金属的转变,以及在室温下由电化学Li +嵌入引起的电导率从p型到n型的完全变化。使用原位NIR-PL直接观察空位离子相互作用表明,该转变是钝化天然镍(阳离子)空位缺陷并随后形成由Li +插入晶格驱动的氧(阴离子)空位缺陷的结果。 X射线光电子能谱研究旨在研究由于缺陷相互作用而导致的镍氧化态的变化,这支持上述结论。在第二项研究中,研究了氧空位缺陷对V2O5纳米线的电子和光学性质的主要影响。原位拉曼光谱,光致发光,吸收和光发射光谱。我们显示,通过Li +插入进行的热还原和电化学还原均会导致晶体中氧空位缺陷的产生,从而导致能带填充和V2O5的光学带隙从1.95 eV增加到2.45 eV,这种效应被称为Burstein-Moss效应。;在第三项研究中,我们报告了一种新型的金属吸附在金属氧化物中的半导体吸附水相互作用,称为“电化学表面转移掺杂”,这种现象以前曾在氢封端的金刚石碳纳米管中观察到,氮化镓和氧化锌。众所周知,大多数室温下的TMO都是高度水合的。我们表明,存在于TMOs表面的吸附水膜促进了气态物质的溶解并促进了吸附水/氧化物界面上的电荷转移。此外,我们通过使用原位NIR-PL,电学方法直接监测气态物质之间的电荷转移过程和非化学计量的p型氧化镍和n型氧化钨中的空位缺陷,从而显示空位缺陷在增强催化过程中的作用。电阻和X射线光电子能谱。我们发现吸附的水和空位缺陷在影响催化,电子,电气和光学变化(例如,绝缘体到金属的过渡以及电化学反应过程中的辐射发射)方面的重要性。此外,我们证明电化学表面转移掺杂存在于另一个系统中,特别是在氮化镓中并且,存在于GaN表面上的该吸附水膜的存在诱导了来自GaN的电子转移,从而导致在表面上形成电子耗尽区。

著录项

  • 作者

    Wang, Qi.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Chemical engineering.;Materials science.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:56

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号