首页> 外文期刊>Applied Surface Science >Computational predictions of electronic properties of graphene with defects, adsorbed transition metal-oxides and water using density functional theory
【24h】

Computational predictions of electronic properties of graphene with defects, adsorbed transition metal-oxides and water using density functional theory

机译:利用密度泛函理论预测具有缺陷,吸附的过渡金属氧化物和水的石墨烯的电子性质

获取原文
获取原文并翻译 | 示例
       

摘要

The interfacial interactions between transition metal oxides (vanadium oxide VO2, vanadium pentoxide V2O5, cobalt oxide CoO and Co3O4, manganese oxide MnO2) and water adsorbates on graphene supports as solvated interfaces and influence of defects in graphene are studied using periodic density functional theory (DFT) calculations in view of their significance for applied electrochemistry. DFT complemented and synergized our experimental work. The optimized metal oxide adatom-graphene geometries identified the preferred adatom sites, whereas metal oxide-graphene strengths are correlated with the adatom distance from the graphene plane, the Metal-C overlap populations, and the adsorption energies. The presence of finite electronic density of states (DOS) near Fermi level and charge transfers between the adatom top layer and graphene supports reflect primarily covalent bonding nature. The presence of small orbital overlap integral of bonds between the s and p (and d) orbitals of the nearest carbon (graphene), carbon oxide (graphene oxide) and metal oxide atoms reveal localized orbital re-hybridization resulting in changes in DOS yielding high electrochemical activity. Moreover, for increased adatom coverage the extent of charge transfer reverses resulting in limited electroactivity. In fact, DFT calculations are corroborated with experimental findings, where graphene-based supports decorated with optimal mass loaded nanostructured Co3O4 and MnO2 (as well as V2O5) were capable of delivering maximum specific energy storage capacity (Cs) 550 F.g(-1) (Gupta et al. J. Mater. Res. 32, 301 (2017)) in contrast to higher or lower loading. The presence of defects in graphene materials results in new electronic states to endow unique functionalities that is not otherwise possible in the bulk and with adsorbed water molecules besides optimum C/O ratio in graphene oxide nanosheets that show redshift thus a decreasing bandgap and finite charge transfer from graphene to water molecules. The case examples studied in this work represent a first glimpse of what may become routine and integral step in materials design and discovery for alternative energy and sustainable environmental technologies.
机译:使用周期性密度泛函理论(DFT)研究了过渡金属氧化物(钒氧化物VO2,五氧化二钒V2O5,氧化钴CoO和Co3O4,氧化锰MnO2)与作为吸附剂的石墨烯载体上的水吸附剂之间的界面相互作用以及石墨烯中缺陷的影响)考虑到其对应用电化学的意义进行计算。 DFT补充并协同了我们的实验工作。优化的金属氧化物吸附原子-石墨烯的几何形状确定了优选的吸附原子位点,而金属氧化物-石墨烯的强度则与离石墨烯平面的吸附原子距离,金属-C重叠种群以及吸附能相关。费米能级附近的有限状态电子密度(DOS)的存在以及吸附剂顶层和石墨烯载体之间的电荷转移主要反映了共价键的性质。最近的碳(石墨烯),碳氧化物(氧化石墨烯)和金属氧化物原子的s和p(和d)轨道之间存在键的小轨道交叠积分,这表明局部轨道重新杂化,导致DOS改变,从而产生高电化学活性。此外,为了增加吸附原子的覆盖范围,电荷转移的程度会反向,从而导致电活性受到限制。实际上,DFT计算得到了实验结果的证实,其中以石墨烯为基的载体装饰有最佳质量负载的纳米结构Co3O4和MnO2(以及V2O5),能够提供最大的比能存储容量(Cs)> 550 Fg(-1) (Gupta et al.J.Mater.Res.32,301(2017))与更高或更低的负载相反。石墨烯材料中缺陷的存在导致了新的电子态,赋予了独特的功能,这种功能在体积和吸附的水分子中是不可能的,此外,氧化石墨烯纳米片中的最佳C / O比显示出红移,从而带隙减小和有限的电荷转移从石墨烯到水分子。在这项工作中研究的案例实例首次展示了在替代能源和可持续环境技术的材料设计和发现中可能成为常规步骤和整体步骤的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号