首页> 外文期刊>RSC Advances >Tunable nanostructured distributed Bragg reflectors for III-nitride optoelectronic applications
【24h】

Tunable nanostructured distributed Bragg reflectors for III-nitride optoelectronic applications

机译:可调谐纳米结构分布式布拉格反射器,用于III-氮化物光电应用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Highly reflective and conductive distributed Bragg reflectors (DBRs) are the key for high-performance III-nitride optoelectronic devices, such as vertical cavity surface emitting lasers (VCSELs), but they still suffer from lack of lattice-matched conductive DBR and uncontrollable processes. In this work, nanostructured GaN-based DBRs were fabricated and optimized both experimentally and simulatively using electrochemical etching (EC) in different electrolytes using the transfer-matrix method (TMM) to obtain uniform wafer scale, highly reflective and conductive reflectors for the application of GaN-based optoelectronics. The results revealed that a nanostructured GaN-based DBR with high reflectivity (>93%) and broad stopband (similar to 80 nm) could be achieved in neutral sodium nitrate by EC, and the nanostructured GaN DBR with a full visible spectrum range could be designed by tuning the thickness of the nanostructured GaN DBR layers. The photoluminescence (PL) and light-out power enhancements of the GaN-based micro-LED by incorporating the fabricated nanostructured GaN-based DBR were 6 times and 150% without the degradation of electrical performance, respectively, which contributed to strong light scattering from the DBR layers. We believe that this work will pave a way to obtain high-performance GaN-based optoelectronic devices and guide the applications in the field of flexible devices and biomedical sensors.
机译:高度反射和导电分布式布拉格反射器(DBR)是高性能III族氮化物光电器件的关键,例如垂直腔表面发射激光器(VCSEL),但它们仍然缺乏晶格匹配的导电DBR和无法控制的过程。在这项工作中,使用转移矩阵法(TMM)在不同电解质中使用电化学蚀刻(EC)来制造和优化基于GAN的DBRS,以获得均匀的晶片刻度,高度反射和导电反射器的应用GaN的光电子。结果表明,通过EC的中性硝酸钠可以实现具有高反射率(> 93%)和宽止阻带(类似于80nm)的纳米结构的GaN基DBR,并且纳米结构GaN DBR可以是完全可见光谱范围的通过调节纳米结构GaN DBR层的厚度来设计。通过掺入制造的纳米结构GaN基DBR的GaN基微LED的光致发光(PL)和发光功率增强6次,而不会分别降低电气性能,这导致了强烈的光散射DBR层。我们认为这项工作将铺平方法来获得高性能GAN的光电器件,并指导柔性器件和生物医学传感器领域的应用。

著录项

  • 来源
    《RSC Advances》 |2020年第39期|共9页
  • 作者单位

    Shandong Univ Inst Marine Sci &

    Technol Qingdao 266237 Peoples R China;

    Shandong Univ Dept Microelect Jinan 250100 Peoples R China;

    Shandong Univ Inst Marine Sci &

    Technol Qingdao 266237 Peoples R China;

    Shandong Univ Dept Microelect Jinan 250100 Peoples R China;

    Shandong Univ Dept Microelect Jinan 250100 Peoples R China;

    Shandong Univ Dept Microelect Jinan 250100 Peoples R China;

    Shandong Univ Inst Marine Sci &

    Technol Qingdao 266237 Peoples R China;

    Jiangsu Ind Technol Res Inst Depth Percept Inst Nanjing 214000 Jiangsu Peoples R China;

    Huaian Aucksun Optoelect Technol Ltd Huaian 223200 Peoples R China;

    Shandong Univ Dept Microelect Jinan 250100 Peoples R China;

    Shandong Univ Inst Marine Sci &

    Technol Qingdao 266237 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号