首页> 外文期刊>Nucleic Acids Research >Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation
【24h】

Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation

机译:氮化应激抑制S-亚硝化的线粒体苏氨酰-TRNA合成酶的氨基化和编辑活性

获取原文
获取原文并翻译 | 示例
           

摘要

Structure and/or function of proteins are frequently affected by oxidative/nitrosative stress via posttranslational modifications. Aminoacyl-tRNA synthetases (aaRSs) constitute a class of ubiquitously expressed enzymes that control cellular protein homeostasis. Here, we found the activity of human mitochondrial (mt) threonyl-tRNA synthetase (hmtThrRS) is resistant to oxidative stress (H2O2) but profoundly sensitive to nitrosative stress (S-nitrosoglutathione, GSNO). Further study showed four Cys residues in hmtThrRS were modified by S-nitrosation upon GSNO treatment, and one residue was one of synthetic active sites. We analyzed the effect of modification at individual Cys residue on aminoacylation and editing activities of hmtThrRS in vitro and found that both activities were decreased. We further confirmed that S-nitrosation of mtThrRS could be readily detected in vivo in both human cells and various mouse tissues, and we systematically identified dozens of S-nitrosation-modified sites in most aaRSs, thus establishing both mitochondrial and cytoplasmic aaRS species with S-nitrosation ex vivo and in vivo, respectively. Interestingly, a decrease in the S-nitrosation modification level of mtThrRS was observed in a Huntington disease mouse model. Overall, our results establish, for the first time, a comprehensive S-nitrosation-modified aaRS network and a previously unknown mechanism on the basis of the inhibitory effect of S-nitrosation on hmtThrRS.
机译:蛋白质的结构和/或函数经常通过后期改变的氧化/亚硝基胁迫影响。氨基酰基-TRNA合成酶(AARS)构成一种普遍表达的酶,其控制细胞蛋白质稳态。这里,我们发现人体线粒体(MT)苏氨酰-TRNA合成酶(HMTTHRRS)的活性对氧化应激(H 2 O 2)抵抗但对亚硝化应激(S-NITROSOGLUTHATHIONE,GSNO)非常敏感。进一步的研究表明,在GSNO处理时通过S-亚硝化改性HMTTHRR中的四种CYS残基,并且一种残余物是合成活性位点之一。我们分析了在体外氨基乙基化和编辑HMTTHRRS的氨基酰化和编辑活性的改性的影响,发现这两个活动都减少了。我们进一步证实,在人类细胞和各种小鼠组织中,可以在体内进行体内进行Mtthrrs的S-亚硝化,并且我们在大多数AARS中系统地鉴定了数十种S-亚硝化修饰的部位,从而建立了线粒体和细胞质AARS种类 - 硝基体内和体内。有趣的是,在亨廷顿疾病小鼠模型中观察到MTTHRRS的S-亚硝化改性水平的减少。总体而言,我们的结果首次建立了全面的S-亚硝化改性的AARS网络和以前未知的机制,基于S-亚硝化对HMTTHRRS的抑制作用。

著录项

  • 来源
    《Nucleic Acids Research》 |2020年第12期|共12页
  • 作者单位

    Chinese Acad Sci Ctr Excellence Mol Cell Sci Shanghai Inst Biochem &

    Cell Biol State Key Lab Mol Biol Shanghai 200031 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Biomacromol Inst Biophys Natl Lab Biomacromol Beijing 100101 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Biomacromol Inst Biophys Natl Lab Biomacromol Beijing 100101 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Biomacromol Inst Biophys Natl Lab Biomacromol Beijing 100101 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Biomacromol Inst Biophys Natl Lab Biomacromol Beijing 100101 Peoples R China;

    Chinese Acad Sci Ctr Excellence Mol Cell Sci Shanghai Inst Biochem &

    Cell Biol State Key Lab Mol Biol Shanghai 200031 Peoples R China;

    Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci Ctr Excellence Mol Cell Sci Shanghai Inst Biochem &

    Cell Biol State Key Lab Mol Biol Shanghai 200031 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号