...
首页> 外文期刊>NeuroImage >Coherent slow cortical potentials reveal a superior localization of resting-state functional connectivity using voltage-sensitive dye imaging
【24h】

Coherent slow cortical potentials reveal a superior localization of resting-state functional connectivity using voltage-sensitive dye imaging

机译:相干慢的皮质电位揭示了使用电压敏感染料成像的静态功能连接的优越定位

获取原文
获取原文并翻译 | 示例
           

摘要

The resting-state functional connectivity (RSFC) of spontaneous hemodynamic fluctuations is widely used to investigate large-scale functional brain networks based on neurovascular mechanisms. However, high-resolution RSFC networks based on neural activity have not been disclosed to explore the neural basis of these spontaneous hemodynamic signals. The present study examines the neural RSFC networks in mice at high spatial resolution using optical imaging with voltage-sensitive dyes (VSDs). Our results show that neural RSFC networks for the slow cortical potentials (0.1-4 Hz) showed similar correlation patterns to the RSFC networks for the spontaneous hemodynamic signals, indicating a tight coupling between the slow cortical potential and the spontaneous hemodynamic signals during rest, but the bilateral symmetry of the RSFC networks for the slow cortical potentials was significantly lower than that for the spontaneous hemodynamic signals. Moreover, similar asymmetric neural activation patterns could also be found between the bilateral cortexes after stimulating the paws of mice. By increasing anesthetic levels to induce the reduction of consciousness, the RSFC networks for the slow cortical potentials persisted, but those for the spontaneous hemodynamic signals became discrete. These results suggest that the coherent slow cortical potentials underlie the spontaneous hemodynamic fluctuations and reveal a superior localization of RSFC networks. VSD imaging may potentially be used to examine the RSFC of neural activity, particularly under conditions of impaired neurovascular coupling.
机译:自发血液动力学波动的静态功能连接(RSFC)广泛用于研究基于神经血管机制的大规模功能性脑网络。然而,没有公开基于神经活动的高分辨率RSFC网络以探索这些自发血液动力学信号的神经基础。本研究在使用光学成像与电压敏感染料(VSD)的高空间分辨率,在小小的空间分辨率下检查神经RSFC网络。我们的结果表明,用于慢速皮质电位(0.1-4Hz)的神经RSFC网络向RSFC网络的用于自发血液动力学信号的相关模式显示出类似的相关模式,表明慢速皮质电位和休息期间的自发血液动力学信号之间的紧密耦合,但是慢速皮质电位的RSFC网络的双边对称性显着低于自发血液动力学信号的影响。此外,在刺激小鼠的爪子之后,在双侧皮质之间也可以在双侧皮质之间发现类似的不对称神经激活模式。通过增加麻醉水平来诱导意识的减少,RSFC网络对于缓慢的皮质电位持续存在,但是自发血液动力学信号的速度是离散的。这些结果表明,连贯的缓慢皮质电位利用自发的血液动力学波动,并揭示了RSFC网络的优越定位。 VSD成像可能用于检查神经活动的RSFC,特别是在神经血管偶联受损的条件下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号