首页> 外文期刊>Nanotechnology >Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting
【24h】

Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting

机译:用于中性pH水分裂的有效硅纳米线阵列/ WO3芯/壳光电极

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We report the first demonstration of a high-efficiency photoelectrochemical (PEC) water splitting reaction using a novel Si NWs/WO3 core/shell photoanode prepared by a mild and inexpensive metal-catalyzed electroless etching process followed by dip-coating, airing and annealing methods. The dense and vertically aligned Si NWs/WO3 core/shell nanostructure were characterized by scanning electron microscopy, transmission electron microscopy and x-ray diffraction. In comparison to planar n-Si, Si NWs and planar Si/WO3, the Si NWs/WO3 samples showed significantly enhanced photocurrent over the entire potential sweep range. More significantly, the Si NWs/WO3 samples have an exceptionally low photocurrent onset potential of -0.6393V versus reversible hydrogen electrode (RHE), indicating very efficient charge separation and charge transportation processes. The as-prepared electrode also has a photocurrent density of 2.7 mA cm(-2) at 0.6107V versus RHE in 0.5M Na2SO4 solution under simulated solar light irradiation (100 mW cm(-2) from 300W Xenon lamp coupled with an AM 1.5 G filter). An optimal solar-to-hydrogen efficiency of about 1.9% was achieved at 0.2676V versus RHE. Electrochemical impedance spectroscopy was conducted to investigate the properties of the charge transfer process, and the results indicated that the enhanced PEC performance may due to the increased charge separation. The x-ray photoelectron spectroscopy measurements indicated the chemical composition of the Si NWs/WO3 nanostructure. Our work has provided an efficient strategy to improve the energy conversion efficiency and photocurrent of water splitting materials.
机译:我们通过一种新的Si NWS / WO3芯/壳光电,通过温和且廉价的金属催化的无电蚀刻工艺制备,首先报告高效光电化学(PEC)水分裂反应的第一次演示。用浸涂,吹气和退火方法制备。通过扫描电子显微镜,透射电子显微镜和X射线衍射,表征致密和垂直对齐的Si NWS / WO3核/烷纳米结构。与平面N-Si,SiNWS和平面Si / WO3相比,SiNWS / WO3样品在整个电位扫描范围内显示出显着增强的光电流。更重要的是,SiNWS / WO3样品具有特别低的光电流发作潜力-0.6393V与可逆氢电极(RHE),表明非常有效的电荷分离和电荷运输过程。根据模拟的太阳光照射(100mM cm(-2),从300W氙灯加上AM 1.5,在0.5M Na 2 SO 4溶液中,在0.5M Na 2 SO 4溶液中,如图0.5M Na 2 SO 4溶液中的光电流密度为2.7 mA cm(-2)。 g过滤器)。在0.2676V与RHE上实现了约1.9%的最佳太阳能氢效率。进行电化学阻抗光谱以研究电荷转移过程的性质,结果表明,增强的PEC性能可能是由于电荷分离增加。 X射线光电子体光谱测量结果表明了SiNWS / WO3纳米结构的化学成分。我们的工作提供了一种有效的策略,可以提高水分裂材料的能量转换效率和光电流。

著录项

  • 来源
    《Nanotechnology》 |2017年第27期|共9页
  • 作者单位

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Int Acad Optoelect Zhaoqing Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Adv Mat South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat Guangzhou 511458 Guangdong Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat Guangzhou 511458 Guangdong Peoples R China;

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Adv Mat South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

    South China Normal Univ Inst Elect Paper Displays South China Acad Adv Optoelect Guangzhou Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    water splitting; photoelectrochemical cells; SiNWs/WO3 core/shell nanostructures;

    机译:水分裂;光电化学电池;SINWS / WO3核心/壳纳米结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号