...
首页> 外文期刊>Nanotechnology >Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology
【24h】

Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology

机译:卤化物钙钛矿太阳能电池使用单晶TiO2纳米棒作为电子传输层:纳米德形态的影响

获取原文
获取原文并翻译 | 示例

摘要

This is the first report of a 17.6% champion efficiency solar cell architecture comprising monocrystalline TiO2 nanorods (TNRs) coupled with perovskite, and formed using facile solution processing without non-routine surface conditioning. Vertically oriented TNR ensembles are desirable as electron transporting layers (ETLs) in halide perovskite solar cells (HPSCs) because of potential advantages such as vectorial electron percolation pathways to balance the longer hole diffusion lengths in certain halide perovskite semiconductors, ease of incorporating nanophotonic enhancements, and optimization between a high contact surface area for charge transfer (good) versus high interfacial recombination (bad). These advantages arise from the tunable morphology of hydrothermally grown rutile TNRs, which is a strong function of the growth conditions. Fluorescence lifetime imaging microscopy of the HPSCs demonstrated a stronger quenching of the perovskite PL when using TNRs as compared to mesoporous/compact TiO2 thin films. Due to increased interfacial contact area between the ETL and perovskite with easier pore filling, charge separation efficiency is dramatically enhanced. Additionally, solid-state impedance spectroscopy results strongly suggested the suppression of interfacial charge recombination between TNRs and perovskite layer, compared to other ETLs. The optimal ETL morphology in this study was found to consist of an array of TNRs similar to 300 nm in length and similar to 40 nm in width. This work highlights the potential of TNR ETLs to achieve high performance solution-processed HPSCs.
机译:这是一个17.6%冠军效率太阳能电池架构的第一个报告,该冠军太阳能电池架构包括与钙钛矿偶联的单晶TiO2纳米棒(TNR),并在没有非常规表面调节的情况下使用容器溶液加工形成。由于诸如矢量电子渗透途径的潜在优点,以平衡某些卤化物钙钛矿半导体中的较长孔扩散长度,易于加入持续的卤化物渗透率,所以垂直定向的TNR合奏是理想的卤化汞钙钛矿太阳能电池(HPSC)。和电荷转移的高接触表面区域之间的优化与高界面重组(坏)。这些优点是从热热的金红石TNR的可调形态产生,这是生长条件的强效力。与介孔/紧凑的TiO 2薄膜相比,HPSC的荧光寿命显微镜显微镜显微显示使用TNR时培养的PEROVSKITE PL的较强猝灭。由于ETL和PEROVSKITE之间的界面接触面积增加,具有更容易填充,电荷分离效率显着增强。另外,与其他ETL相比,固态阻抗光谱结果强烈建议抑制TNR和Perovskite层之间的界面电荷重组。发现该研究中的最佳ETL形态被发现由类似于300nm的TNR阵列组成,长度为300nm,宽度类似于40nm。这项工作突出了TNR ETL的潜力,以实现高性能解决方案处理的HPSC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号