首页> 外文期刊>Nanotechnology >Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
【24h】

Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements

机译:在氧化硅纳米接触中粘合:相互作用电位和力测量

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically 10(3) nm(2)) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
机译:两个硅氧化物纳米级表面之间的界面粘合已被研究作为原子性质和接触凹凸尺寸的函数。使用各种相互作用势获得的结合力与真空测量用原子力显微镜实验力的曲线相比。在小nanocontacts极限(一般小于; 10(3)纳米(2))与结合被发现由热引起的波动的影响敏感的探针来测量。使用反应速率理论内莫尔斯描述界面交互,嵌入原子模型,或伦纳德 - 琼斯势,我们研究三个接合类型共价键和范德华性质。的数值模拟和实验结果的比较表明,一个伦纳德 - 琼斯状从范德华相互作用捕获干氧化硅nanocontacts的结合特性,并且很可能的吸附在氧化硅表面上的其它纳米级材料潜在始发。该分析揭示了分散表面能的和由拉伸速度改变的有效接触面积的重要性。平均结合力被发现为随着接触的吸引力政权花费的时间。这种接触弱化由负老化系数从而拓宽,并在低的拉伸速度下移动的热感应力分布为特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号