...
首页> 外文期刊>Nanotechnology >Emerging neuromorphic devices
【24h】

Emerging neuromorphic devices

机译:新兴的神经形态器件

获取原文
获取原文并翻译 | 示例

摘要

Artificial intelligence (AI) has the ability of revolutionizing our lives and society in a radical way, by enabling machine learning in the industry, business, health, transportation, and many other fields. The ability to recognize objects, faces, and speech, requires, however, exceptional computational power and time, which is conflicting with the current difficulties in transistor scaling due to physical and architectural limitations. As a result, to accelerate the progress of AI, it is necessary to develop materials, devices, and systems that closely mimic the human brain. In this work, we review the current status and challenges on the emerging neuromorphic devices for brain-inspired computing. First, we provide an overview of the memory device technologies which have been proposed for synapse and neuron circuits in neuromorphic systems. Then, we describe the implementation of synaptic learning in the two main types of neural networks, namely the deep neural network and the spiking neural network (SNN). Bio-inspired learning, such as the spike-timing dependent plasticity scheme, is shown to enable unsupervised learning processes which are typical of the human brain. Hardware implementations of SNNs for the recognition of spatial and spatio-temporal patterns are also shown to support the cognitive computation in silico. Finally, we explore the recent advances in reproducing bio-neural processes via device physics, such as insulating-metal transitions, nanoionics drift/diffusion, and magnetization flipping in spintronic devices. By harnessing the device physics in emerging materials, neuromorphic engineering with advanced functionality, higher density and better energy efficiency can be developed.
机译:人工智能(AI)通过在行业,商业,健康,运输和许多其他领域实现机器学习,拥有彻底彻底改变我们的生活和社会的能力。然而,识别对象,面部和语音的能力,需要具有出色的计算能力和时间,这与由于物理和架构限制导致的晶体管缩放的当前困难冲突。结果,为了加速AI的进展,有必要开发密切模仿人脑的材料,装置和系统。在这项工作中,我们审查了新兴神经栓子装置的当前状态和挑战,用于脑激发计算。首先,我们概述了已经提出了神经晶体系统中的突触和神经元电路的存储器件技术。然后,我们描述了在两个主要类型的神经网络中的突触学习的实现,即深神经网络和尖峰神经网络(SNN)。 Bio-Inspired学习,例如尖峰定时依赖性塑性方案,以实现典型的人脑的无监督学习过程。 SNN的硬件实现对于识别空间和时空模式,也显示为支持硅中的认知计算。最后,我们探讨了通过器件物理学中再现生物神经过程的最近进步,例如绝缘金属转变,纳米因子漂移/扩散和在旋转式装置中翻转的磁化。通过利用新出现的材料中的器件物理,可以开发具有先进功能,更高密度和更好能效的神经形态工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号