首页> 外文期刊>Nanotechnology >Critical temperature in feedback-controlled electromigration of gold nanostructures
【24h】

Critical temperature in feedback-controlled electromigration of gold nanostructures

机译:黄金纳米结构反馈控制电迁移中的临界温度

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents several experiments demonstrating the need for a more nuanced picture of electromigration (EM) than that of a fixed critical junction temperature at which EM onset occurs. Our data suggests that even for a fixed cross-sectional geometry the critical junction temperature for EM, T-c, varies with environmental temperature, thermal resistance of adjacent regions, and even the direction of the current flow in asymmetric structures. We have performed feedback-controlled EM on nanowires at environmental temperatures between 75 and 260 K and fit the EM onset points with a constant junction power model. We find that average fit critical power is monotonically increasing with decreasing temperature, but is decidedly nonlinear at lower temperatures. We extract and compare the corresponding T-c values using several different thermal models which utilize measured values of nanowire thermal conductivity for our devices: these models all agree on a moderately increasing T-c with decreasing environmental temperature. This is tentatively explained by enhanced current-driven annealing on the voltage ramp prior to EM onset which decreases structural scattering, thereby increasing the critical temperature at which wind-force-driven hopping events will achieve a critical atomic flux. We also obtain fit critical power for a series of bowtie structures of identical constriction but varying adjacent thermal resistance (R-th), and estimate that T-c in the constriction varies with R-th for higher resistance structures. Critical power measurements on a second series of asymmetric bowties further suggests that T-c also depends on the alignment of the electron flow with the temperature gradient at the constriction.
机译:本文呈现了几个实验,证明了需要更细微的电迁移图像(EM)的需要,而不是EM发作发生的固定关键结温。我们的数据表明,即使对于固定的横截面几何形状,即EM,T-C的关键结温,也随着相邻区域的恒温,且甚至在不对称结构中的电流方向而变化。在75和260k之间的环境温度下,我们在纳米线上进行了反馈控制的EM,并用恒定的接合功率模型将EM发作点拟合。我们发现,随着温度的降低,平均适合临界功率是单调的,但在较低温度下明显非线性。我们使用几种不同的热模型提取并比较相应的T-C值,该热模型利用我们的装置的纳米线导热率的测量值:这些模型均同意温度下降的T-C。通过增强电流驱动的电流驱动的退火在EM发作之前提高电流驱动的退火来暂时解释,这降低了结构散射,从而增加了风力驱动的跳跃事件将实现临界原子助焊剂的临界温度。对于一系列相同收缩的弓形结构,但相同的热阻(R-TH),我们还获得了适合临界功率,并且估计收缩中的T-C与较高电阻结构的第R倍随。第二串联不对称弓上的临界功率测量进一步表明T-C还取决于电子流与收缩处的温度梯度的对准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号