...
首页> 外文期刊>Electrochimica Acta >Sycamore-fruit-like SnO2@C nanocomposites: Rational fabrication, highly reversible capacity and superior rate capability anode material for Li storage
【24h】

Sycamore-fruit-like SnO2@C nanocomposites: Rational fabrication, highly reversible capacity and superior rate capability anode material for Li storage

机译:Sycamore-Fruit SnO2 @ C纳米复合材料:合理的制造,高可逆容量和李储存的高速率能力阳极材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

SnO2-based nanostructures have attracted considerable interest as promising high-capacity anode materials for lithium ion batteries (LIBs). Herein, we present a facile hydrothermal-carbonization approach to rationally fabricate a novel sycamore-fruit-like SnO2-based anode material (denoted as H7-500) for LIBs to simultaneously achieve high capacity, long-term cycling stability and ultrahigh rate capability. Structural analyses reveal that H7-500 possesses a sycamore-fruit-like hierarchical structure and is composed of 6-8 nm SnO2 nanoparticles coated with 1.7 nm thin carbon skins embedded on the surface region of 400 nm highly porous carbon spheres. The formation of sycamore-fruit-like structure is confirmed to be promoted by the Ostwald ripening. H7-500 delivers capabilities of 1242.3,1116.5, 1004.8, 878, 745.8 and 488.7 mAh . g(-1) at 0.1, 0.2, 0.5, 1, 2 and 5 A g(-1), respectively. A high capacity of 905.4 mAh . g(-1) sustains after 300 cycles at 1 A g(-1) and a capacitance of 413.4 mAh . g(-1) maintains after 1000 cycles at 5 A g(-1). Notably, H7-500 electrodes exhibit excellent sustainable stability and endurability with sustainable capacities of 177.8 mAh . g(-1) at 10 A g(-1) over 4000 cycles and 133.4 mAh . g(-1) at 20 A g(-1) over 10000 cycles, respectively. Frequently tuning the rate between 0.1 and 10 A g(-1) has no effect on the capacity and cycling stability of H7-500. The sycamore-fruit-like H7-500 shows excellent structural stability during the charge/discharge process. The unique structure not only solves the conventional problem of pulverization, particle aggregation and volume changes but also enhances structural integrity and the reversible reaction, and accelerates the reaction rate. These features render the materials excellent electrochemical performances with high capacity, superior rate capability and long-term cycling stability. The present results may also provide insights into the ongoing extensive endeavor to improve the properties of other electrode materials. (C) 2019 Elsevier Ltd. All rights reserved.
机译:SnO2基纳米结构已经吸引了相当大的兴趣,有前途的用于锂离子电池(LIBS)高容量负极材料。在此,我们提出了一种容易的水热碳化的方法来合理地制造一种新的桑树水果样SnO2基阳极材料(表示为H7-500),用于LIBS同时实现高容量,长期循环稳定性和超高倍率性能。结构分析显示,H7-500拥有桑树果状分层结构,并且由涂覆有嵌入的400nm的高度多孔碳球的表面区域为1.7nm薄碳蒙皮6-8纳米的SnO 2纳米颗粒。的形成梧桐果状结构被确认由奥斯特瓦尔德熟化来促进。 H7-500提供的1242.3,1116.5,1004.8,878,745.8和488.7毫安的能力。克(-1)在0.1,0.2,0.5,1,2和5所述的克(-1),分别。高容量905.4毫安。在1A克300个循环(-1)和413.4毫安的电容后克(-1)维持。在5 A G(-1)1000次循环后克(-1)维护。值得注意的是,H7-500电极显示出优异的稳定性可持续和适应性与177.8毫安的可持续的能力。克(-1)以10 A G(-1)超过4000个循环和133.4毫安。克(-1)20 A G(-1)超过10000次循环,分别。经常调谐0.1和10 A G之间的比率(-1)具有的容量和循环的H7-500稳定性没有影响。梧桐果状时的充电/放电过程H7-500显示出优异的结构稳定性。独特的结构,不仅解决了粉碎,颗粒聚集和量的变化的常规问题,而且还增强结构完整性和可逆反应,和加速了反应速率。这些特点使材料具有高容量,优异的倍率性能和长期循环稳定性优异的电化学性能。本发明的结果还可以提供深入了解正在进行广泛的努力,以改善的其它电极材料的属性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号