...
首页> 外文期刊>Electrochimica Acta >Efficient coupling of semiconductors into metallic MnO2@CoMn2O4 heterostructured electrode with boosted charge transfer for high-performance supercapacitors
【24h】

Efficient coupling of semiconductors into metallic MnO2@CoMn2O4 heterostructured electrode with boosted charge transfer for high-performance supercapacitors

机译:半导体与金属MnO2 @ COMN2O4异质结构电极的高效耦合,高性能超级电容器提高电荷转移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Semiconductor heterostructures have emerged as highly promising candidates for energy storage and conversion owing to their tunable electronic and structural properties by rational design and controllable synthesis at a molecular level. The overall electrochemical performance of the semiconductor heterostructures often depends on the carrier mobility from the semiconductor interfaces and faradaic redox reactions from their active sites. Herein, we report a facile, low-cost, two-step method to controllably grow MnO2 nanorods directly on CoMn2O4 nanosheets (i.e., MnO2@CoMn2O4) with robust adhesion. An induced electric field resulted from the interface effect of heterostructures tailors the kinetic performance of electrons and ions during the charge-discharge process, enhancing the electron mobility and reducing diffusion barrier for charge carriers (OH-) ions migration. As a result, the rational design and controllable heterostructures exhibit significantly improved electrochemical capacitive performance, including remarkable specific capacitance, excellent rate capability, and cycling stability. Furthermore, exploring MnO2@CoMn2O4 as positive electrode and N-doping 3D reduction of graphene oxide (N-3DrGO) as negative electrode yields an asymmetric supercapacitor with high energy density (230.57 mWh cm(-2)), remarkable power density (3.91 mW cm(-2) at 149.99 mWh cm(-2)), and excellent cycling stability (81.3% capacitance retention after 5000 cycles at 3 mA cm(-2)). This work offers new opportunities to explore high-performance electrode materials by providing methods to control the interface in nano-heterostructures. (C) 2020 Elsevier Ltd. All rights reserved.
机译:由于其可调谐的电子和结构性能通过合理的设计和分子水平可控合成,半导体异质结构被出现为能量储存和转化的高度有前途的候选者。半导体异质结构的整体电化学性能通常取决于来自半导体界面的载流子迁移率和来自活性位点的游览氧化还原反应。在此,我们报告了一种容易,低成本,两步的方法,可直接在COMN2O4纳米片(即MNO2 @ COMN2O4)上可控制MnO2纳米棒,其具有鲁棒粘合力。由于异质结构的界面效应导致的诱导电场裁定在充放电过程中电子和离子的动力学性能,增强了电子迁移率和减少电荷载体(OH-)离子迁移的扩散屏障。结果,理性设计和可控异质结构显着提高了电化学电容性能,包括显着的特定电容,优异的速率能力和循环稳定性。此外,作为负极的石墨烯(N-3DRGO)的正极和N掺杂3D减少的MNO2 @ COMN2O4探测为正极,产生具有高能量密度的不对称超级电容器(230.57mWh cm(-2)),功率密度显着(3.91 mW CM(-2)在149.99 mwh cm(-2)),优异的循环稳定性(在3 mA cm(-2)的5000次循环后81.3%的电容保留)。这项工作提供了新的机会,通过提供控制纳米异质结构中的界面的方法来探索高性能电极材料。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号