首页> 外文OA文献 >Band Edge Energetics and Charge Transfer Processes in Semiconductor-Metal Heterostructured Nanorods as Photocatalysts and Metal Oxide Electrode-Organic Semiconductor Interfaces in Organic Photovoltaics
【2h】

Band Edge Energetics and Charge Transfer Processes in Semiconductor-Metal Heterostructured Nanorods as Photocatalysts and Metal Oxide Electrode-Organic Semiconductor Interfaces in Organic Photovoltaics

机译:半导体-金属异质结构纳米棒中的带边能量和电荷转移过程,作为光催化剂和有机光伏中的金属氧化物电极-有机半导体界面

摘要

Energetics, charge selectivity and interfacial charge transfer kinetics affect the efficiency of solar electric energy conversion and solar photochemical formation of fuels. The research described herein focuses on understanding and controlling the energetics, charge selectivity, and interfacial charge transfer processes in organic photovoltaics, as well as new generation semiconductor-semiconductor and metal-semiconductor heterostructured nanorods (NRs) as photocatalysts. Waveguide and transmission based spectroelectrochemistries, photoemission spectroscopies, and impedance spectroscopy were used to characterize the frontier orbital energies, charge selectivity and interfacial charge transfer kinetics in heterostructured NRs and organic photovoltaics. CdSe NRs tipped with Au nanoparticles and CdSe seeded CdS NRs tipped with Pt nanoparticles were used to study the effect of compositional asymmetry and catalytic sites on band edge energies of NRs. We used UV photoemission spectroscopy (UPS) and waveguide and transmission-based spectroelectrochemistry of NR monolayers/multilayers on conductive substrates to estimate valence/conduction band energies. Potential-modulated attenuated total reflectance (PM-ATR) spectroscopy was utilized to measure the apparent heterogeneous rate constants of reversible electron injection into NR films on indium tin oxide (ITO). We conclude from these measurements that metal tipping, which is designed to enhance the photocatalytic activity of semiconductor NRs, altered band edge energies and enhanced electronic coupling to conductive substrates, in ways that are predicted to influence their efficiency as photoelectrocatalysts. Monolayers of functionalized phosphonic acid ruthenium phthalocyanines (RuPcPA) tethered to ITO as a model organic photovoltaic donor/electrode interface were studied to understand the aggregation and orientation dependent charge transfer kinetics and energetics of these systems. The effect of surface roughness on the orientation of RuPcPA was theoretically modeled and compared to the experimental results. Electrochemical and spectroelectrochemical studies revealed the presence of only monomeric species on ITO. Impedance spectroscopy (IS) and PM-ATR were used to measure charge transfer rate constants. Further, frontier orbital energies of RuPcPA modified ITO were measured using UPS, and the results indicated favorable energetics for hole collection at the RuPcPA/ITO interface for OPV applications. The effect of "UV-light soaking" on the performance of organic photovoltaic devices employing metal oxide (MO) electron selective interlayers (ESL) was addressed using sputtered zinc oxide (ZnO) ESL films. This study provides a coherent methodology for differentiating between the proposed origins of the s-shaped current-voltage (J-V) responses in the literature for organic photovoltaics using MO ESLs. We use IS and UPS to demonstrate that the energetic barrier for charge extraction at the ZnO/active layer interface leads to the observed s-shape response in OPVs using ZnO ESLs. Furthermore, this study provides clear guidelines for minimizing the s-shaped J-V response and the effect of UV light on the performances of OPV devices using ZnO ESLs. We have developed solution electrochemical protocols to characterize nanometer-scale porosity and electronic properties of both solution-deposited and sputtered ZnO thin films used as interlayers for electron-harvesting contacts in inverted organic solar cells on ITO substrates. These electrochemical experiments were performed in order to evaluate the hole-blocking abilities of these ZnO ESLs as well as their effective "pinhole density," thus demonstrating a strong correlation to their OPV performances. These electrochemical experiments can be used to characterize and optimize ESLs rapidly, before OPV device fabrication.
机译:高能,电荷选择性和界面电荷转移动力学影响太阳能转换效率和燃料的太阳能光化学形成。本文所述的研究集中于理解和控制有机光伏以及作为光催化剂的新一代半导体-半导体和金属-半导体异质纳米棒(NRs)中的能量,电荷选择性和界面电荷转移过程。基于波导和透射的光谱电化学,光发射光谱学和阻抗光谱学用于表征异质结构NRs和有机光伏中的前沿轨道能量,电荷选择性和界面电荷转移动力学。用Au纳米粒子填充的CdSe NRs和Pt纳米粒子填充的CdSe接种的CdS NRs用于研究成分不对称性和催化位点对NRs带能的影响。我们使用了紫外光发射光谱(UPS)以及导电基体上的NR单层/多层的基于波导和透射的光谱电化学来估计价/导带能。利用电势调制的衰减全反射光谱(PM-ATR)来测量可逆电子注入到铟锡氧化物(ITO)上的NR膜中的表观异质速率常数。我们从这些测量中得出结论,金属倾翻旨在增强半导体NR的光催化活性,改变带边缘能并增强与导电基材的电子耦合,从而预计会影响其作为光电催化剂的效率。研究了功能化的膦酸钌酞菁(RuPcPA)的单分子束,将其束缚在ITO上作为模型有机光伏供体/电极界面,以了解这些系统的聚集和取向依赖性电荷转移动力学和能量学。理论上模拟了表面粗糙度对RuPcPA取向的影响,并与实验结果进行了比较。电化学和光谱电化学研究表明,ITO上仅存在单体物种。阻抗谱(IS)和PM-ATR用于测量电荷转移速率常数。此外,使用UPS测量了RuPcPA修饰的ITO的前沿轨道能量,结果表明,对于OPV应用,RuPcPA / ITO界面处的空穴收集具有良好的能量。使用溅射的氧化锌(ZnO)ESL膜解决了“紫外线浸泡”对采用金属氧化物(MO)电子选择性夹层(ESL)的有机光伏器件性能的影响。这项研究提供了一种连贯的方法,用于区分使用MO ESL的有机光伏材料中s型电流-电压(J-V)响应的拟议起源。我们使用IS和UPS来证明,在使用ZnO ESL的OPV中,用于ZnO /活性层界面的电荷提取的能垒导致观察到的s形响应。此外,这项研究提供了清晰的指南,以最大限度地减少s形J-V响应以及使用ZnO ESL的UV光对OPV器件性能的影响。我们已经开发了溶液电化学方案,以表征溶液沉积和溅射的ZnO薄膜的纳米级孔隙率和电子性能,这些薄膜用作ITO衬底上倒置有机太阳能电池中电子收集触点的中间层。进行这些电化学实验是为了评估这些ZnO ESL的空穴阻挡能力以及它们的有效“针孔密度”,因此证明了其与OPV性能的强相关性。在制造OPV器件之前,这些电化学实验可用于快速表征和优化ESL。

著录项

  • 作者

    Ehamparam Ramanan;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号