...
首页> 外文期刊>Journal of Physics. Condensed Matter >Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory
【24h】

Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

机译:使用液态积分方程理论的自由能导数设计分子配合物

获取原文
获取原文并翻译 | 示例

摘要

Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.
机译:溶液中分子之间的复杂形成是将分子相互作用转化为功能系统的关键过程。这些过程由结合或结合自由能控制,结合或结合能取决于直接的分子相互作用和溶剂化作用。在制药科学中经常要解决的设计目标是,从使化学结构变化方面的结合自由能降至最低的意义上,优化复杂分子的化学性质。在这里,我们证明了液态理论以参考相互作用位点模型的溶质-溶质方程形式提供了高效完成此类任务的所有必要信息。特别地,计算相对于电势参数的定义复合物形成的自由能表面的平均力电势(PMF)的导数可以看作是定义化学空间中朝向较好粘合剂的方向的手段。我们以碱金属离子与水溶液中冠醚18-crown-6结合的基准案例为例进行了说明。为了检验基本溶质-溶质理论的有效性,我们首先比较通过不同方法(包括显式自由能分子动力学模拟作为参考)计算出的PMF。然后显示了基于自由能导数的最佳结合离子半径的预测,可以针对不同的离子参数集产生一致的结果,并且可以与较早,数量级,成本更高的显式模拟结果进行比较。因此,这项原理验证研究证明了液态理论在分子设计问题中的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号