首页> 外文期刊>Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology >Pure and mixed gas adsorption of CH4 and N2 on the metal-organic framework Basolite~R A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF
【24h】

Pure and mixed gas adsorption of CH4 and N2 on the metal-organic framework Basolite~R A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF

机译:金属-有机骨架Basolite〜R A100和新型铜基1,2,4-三唑基间苯二酸酯MOF对CH4和N2的纯混合气体吸附

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Pure gas adsorption isotherms of CH4 and N2 and their binary mixtures were measured at 273 K, 298 K and 323 K and up to 2 MPa on two different microporous metal-organic frameworks (MOFs), i.e. the commercially available Basolite~R A100 and the recently reported copper-based triazolyl benzoate MOF _∞~3 [Cu(Me-4py-trz-ia)] (1). The Toth isotherm model and the vacancy solution model were used to describe the experimentally determined isotherms and proved to be well suited for this purpose. While 1 shows a more homogeneous surface with a nearly constant isosteric heat of adsorption of 18-18.5 kJ mol~(-1) for CH4 and 12-15 kJ mol~(-1) for N2, the isosteric heat of adsorption at zero coverage for Basolite~R A100 is 19 kJ mol~(-1) for CH4 and 16.2 kJ mol~(-1) for N2, decreasing significantly with increasing loading. Binary adsorption isotherms were measured gravimetrically to determine the total adsorbed mass of CH4 and N2. The van Ness method was successfully applied to calculate partial loadings from gravimetrically measured binary adsorption isotherms. Further studies by volumetric-chromatographic experiments support the good correlation between experimental data and predictions by the vacancy solution model (VSM-Wilson) and the ideal adsorbed solution theory (IAST) from pure gas isotherms. The experimental selectivities were determined to be α_(CH4/N2) = 4.0-5.0 for 1, slightly higher than for Basolite~R A100 with α_(CH4/N2) = 3.4-4.5. These values are in good agreement with predictions for ideal selectivities based on Henry's law constants. From the experimental selectivities the potential of both MOFs in gas separation of CH4 from N2 can be derived.
机译:CH2和N2及其二元混合物的纯气体吸附等温线是在两种不同的微孔金属有机骨架(MOF)上,分别在273 K,298 K和323 K以及最高2 MPa的压力下测量的,即市售的Basolite〜R A100和最近报道了铜基三唑基苯甲酸酯MOF_∞〜3 [Cu(Me-4py-trz-ia)](1)。用Toth等温线模型和空位溶液模型来描述实验确定的等温线,并证明非常适合此目的。尽管1显示了一个更均匀的表面,CH4的吸附等规吸附热几乎恒定,而N2的吸附等规吸附热为18-18.5 kJ mol〜(-1),但零覆盖率下的吸附等规吸附热Basolite〜R A100的CH4浓度为19 kJ mol〜(-1),N2浓度为16.2 kJ mol〜(-1),随负载增加而显着降低。重量分析法测定二元吸附等温线,以确定CH4和N2的总吸附质量。 van Ness方法已成功应用于根据重量法测量的二元吸附等温线计算部分负荷。体积色谱实验的进一步研究支持空缺溶液模型(VSM-Wilson)和纯气体等温线的理想吸附溶液理论(IAST)在实验数据和预测之间具有良好的相关性。实验选择性确定为1的α_(CH4 / N2)= 4.0-5.0,略高于Basolite〜RA100的α_(CH4 / N2)= 3.4-4.5。这些值与基于亨利定律常数的理想选择性的预测非常吻合。从实验的选择性中,可以得出两种MOF在将CH4与N2进行气体分离中的潜力。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号