...
首页> 外文期刊>Journal of Molecular Biology >Role of the alpha Clamp in the Protein Translocation Mechanism of Anthrax Toxin
【24h】

Role of the alpha Clamp in the Protein Translocation Mechanism of Anthrax Toxin

机译:α钳位在炭疽毒素蛋白转运机制中的作用

获取原文
获取原文并翻译 | 示例

摘要

Membrane-embedded molecular machines are utilized to move water-soluble proteins across these barriers. Anthrax toxin forms one such machine through the self-assembly of its three component proteins protective antigen (PA), lethal factor, and edema factor. Upon endocytosis into host cells, acidification of the endosome induces PA to form a membrane-inserted channel, which unfolds lethal factor and edema factor and translocates them into the host cytosol. Translocation is driven by the proton motive force, composed of the chemical potential, the proton gradient (Delta pH), and the membrane potential (Delta psi). A crystal structure of the lethal toxin core complex revealed an "alpha clamp" structure that binds to substrate helices nonspecifically. Here, we test the hypothesis that, through the recognition of unfolding helical structure, the alpha clamp can accelerate the rate of translocation. We produced a synthetic PA mutant in which an alpha helix was crosslinked into the alpha clamp to block its function. This synthetic construct impairs translocation by raising a yet uncharacterized translocation barrier shown to be much less force dependent than the known unfolding barrier. We also report that the alpha clamp more stably binds substrates that can form helices than those, such as polyproline, that cannot. Hence, the alpha clamp recognizes substrates by a general shape-complementarity mechanism. Substrates that are incapable of forming compact secondary structure (due to the introduction of a polyproline track) are severely deficient for translocation. Therefore, the a clamp and its recognition of helical structure in the translocating substrate play key roles in the molecular mechanism of protein translocation. (c) 2015 The Authors. Published by Elsevier Ltd.
机译:膜嵌入分子机器用于使水溶性蛋白质跨这些障碍移动。炭疽毒素通过其三组分蛋白质保护性抗原(PA),致死因子和浮肿因子的自组装形成了这样一种机器。内吞进入宿主细胞后,内体的酸化会诱导PA形成膜插入通道,从而展开致死因子和浮肿因子并将其转运到宿主细胞质中。易位由质子原动力驱动,质子原动力由化学势,质子梯度(ΔpH)和膜电位(Δpsi)组成。致命毒素核心复合物的晶体结构显示“α钳”结构,该结构非特异性地与底物螺旋结合。在这里,我们测试了一个假设,即通过识别展开的螺旋结构,α钳位可以加速移位的速度。我们生产了一个合成的PA突变体,其中α螺旋被交联到α钳位中以阻断其功能。这种合成的构建体通过升高尚未被表征的易位屏障来损害易位,该易位屏障显示出与已知的展开屏障相比,其对力的依赖性小得多。我们还报告说,与不能形成螺旋的底物(例如聚脯氨酸)相比,α钳夹更稳定地结合了可以形成螺旋的底物。因此,阿尔法夹具通过一般的形状互补机制识别基板。无法形成紧凑的二级结构(由于引入了聚脯氨酸轨道)的基材严重缺乏易位性。因此,a钳及其对易位基质中螺旋结构的识别在蛋白质易位的分子机制中起着关键作用。 (c)2015作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号