首页> 外文期刊>Journal of Materials Processing Technology >Application of mathematical modeling in two-stage rolling of hot rolled wire rods
【24h】

Application of mathematical modeling in two-stage rolling of hot rolled wire rods

机译:数学建模在热轧线材两阶段轧制中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

The no-recrystallization temperature (T_(nr)) is an important parameter in the design of two-stage rolling schedule to obtain finer grain size. T_(nr) was obtained both by continuous cooling compression testing and tension-compression testing. However, due to the limitations of experimental installation, both compressing testing and tension-compression testing have a scaling down of practical pass strain and strain rate in rolling mill. The mathematical model that calculates mean flow stress (MFS) can eliminate these limitations and the pass strain and strain applied in mathematical model are approximately equal to the mean value of that in wire-rod rolling mill. Therefore, mathematical calculation is a new method to determine T_(nr) and the predicted T_(nr) is similar to experimental results. Due to the high strain rate and short interpass time at the finishing strain of wire rods mills, mathematical modeling is also an effective method to simulate microstructure-evolution in wire rods rolling. An expert system was established to study the microstructure evolution in two-stage rolling through the obtained dynamic recrystallization (DRX) model combined with metadynamic recrystallization (MRX) and static recrystallization (SRX) model in literature. In the present work, it is simplified that the complete metadynamic recrystallization (MRX) is achieved when strain for deformation exceeds critical strain ε_c. It was found that strain accumulation played an important role in finishing rolling. The recrystallization behavior during finishing rolling stage was repeated by static and dynamic model. The predicted austenite grain size and mean flow stress at each pass are expected to provide guidance for appropriate rolling schedule design.
机译:为了获得更细的晶粒尺寸,无再结晶温度(T_(nr))是两阶段轧制计划设计中的重要参数。通过连续冷却压缩试验和拉伸压缩试验获得T_(nr)。然而,由于实验装置的局限性,压缩试验和拉伸压缩试验都降低了轧机中的实际通过应变和应变率。计算平均流应力(MFS)的数学模型可以消除这些限制,并且在数学模型中应用的通过应变和应变大约等于线材轧机的平均值。因此,数学计算是确定T_(nr)的一种新方法,预测的T_(nr)与实验结果相似。由于线材轧机的最终应变时应变率高,通过时间短,因此数学建模也是模拟线材轧制过程中组织演变的有效方法。建立了一个专家系统,通过结合文献中获得的动态重结晶(DRX)模型和亚动态重结晶(MRX)和静态重结晶(SRX)模型研究两阶段轧制的组织演变。在本工作中,简化了当变形应变超过临界应变ε_c时实现了完整的亚动力学重结晶(MRX)。发现应变积累在精轧中起重要作用。通过静态和动态模型重复了精轧阶段的再结晶行为。预计每次道次的预测奥氏体晶粒尺寸和平均流动应力可为适当的轧制计划设计提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号