首页> 外文学位 >Mathematical modelling of deformation and microstructure evolution during hot rolling of AA5083 aluminum alloy.
【24h】

Mathematical modelling of deformation and microstructure evolution during hot rolling of AA5083 aluminum alloy.

机译:AA5083铝合金热轧过程中变形和组织演变的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

Hot rolling, a critical process in the manufacturing of aluminum sheet, can significantly impact the final properties of the cold rolled sheet. The control of the thermo-mechanical conditions during hot rolling and the resulting microstructure of aluminum sheets is critical in order to determine the final sheet properties. Several complexities are associated with controlling microstructure evolution, especially during multi-pass hot rolling. Firstly, the microstructure evolution is a result of the complex interaction between the deformation history that the material experiences during rolling and the resulting material changes that occur during rolling. Moreover, the multi-pass aspect of the rolling process adds to the complexity of the process as the prior thermo-mechanical history can influence the material stored energy and response to subsequent deformation. This calls for further understanding of the way the stored energy is accumulated in situations where various recrystallizations levels may occur in the interpass region to be able to follow and track microstructure changes.; In this research, a comprehensive mathematical model has been developed to predict through-thickness thermal and deformation history of AA5083 aluminum sheet undergoing single-pass and multi-pass hot rolling using the commercial finite element package, ABAQUS. A physically based internal state variable microstructure model was employed to calculate the material stored energy and subsequent recrystallization kinetics as a function of deformation conditions. A new more physically-based approach to account for the non-isothermal cooling in the inter-pass region was applied to capture and track the accumulation of the material stored energy during multi-pass hot rolling.; The model has been extensively validated against experimental measurements conducted using Corus' pilot scale rolling facility located in IJmuiden, the Netherlands for AA5083 aluminum alloy sheet under a wide variety of industrially relevant single pass and multi-pass hot rolling conditions. The model was able to predict the temperature, strain profile and the rolling load reasonably well for both single-pass and multi-pass rolling cases. The model was able to predict the fraction recrystallized relatively well for all the cases. The model predicted recrystallized grain size was in reasonable agreement with the measurements for single-pass rolling cases while a constant deviation of ∼11 mum was observed for multi-pass ones. (Abstract shortened by UMI.)
机译:热轧是铝板制造中的关键过程,会显着影响冷轧板的最终性能。为了确定最终的板材性能,控制热轧过程中的热机械条件和铝板的最终微观结构至关重要。控制微观组织的发展与复杂性有关,特别是在多道次热轧过程中。首先,微观结构的演变是材料在轧制过程中经历的变形历史与轧制过程中发生的材料变化之间复杂相互作用的结果。此外,轧制过程的多次通过增加了过程的复杂性,因为先前的热机械历史会影响材料的储能和对后续变形的响应。这就要求进一步了解在道间区域中可能发生各种重结晶水平以能够跟踪和跟踪微结构变化的情况下所存储的能量的积累方式。在这项研究中,使用商业有限元软件包ABAQUS,开发了一种综合数学模型来预测A5083铝板进行单道次和多道次热轧的全厚度热和变形历史。使用基于物理的内部状态变量微结构模型来计算材料存储的能量和随后的再结晶动力学,作为变形条件的函数。一种新的基于物理的新方法解决了道间区域的非等温冷却问题,该方法被用于捕获和跟踪多道次热轧过程中材料存储的能量积累。该模型已通过在荷兰IJmuiden的Corus中试规模轧制厂针对AA5083铝合金薄板在各种工业相关的单道次和多道次热轧条件下进行的实验测量进行了广泛验证。对于单道次和多道次轧制情况,该模型都能很好地预测温度,应变曲线和轧制载荷。该模型能够预测所有情况下相对重结晶的馏分。该模型预测的再结晶晶粒尺寸与单道次轧制情况下的测量值合理吻合,而多道次轧制观察到的恒定偏差约为11微米。 (摘要由UMI缩短。)

著录项

  • 作者

    Ahmed, Hany.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号