...
首页> 外文期刊>Surface & Coatings Technology >Growth, structural and mechanical properties of magnetron-sputtered ZrN/SiNx nanolaminated coatings
【24h】

Growth, structural and mechanical properties of magnetron-sputtered ZrN/SiNx nanolaminated coatings

机译:磁控溅射ZrN / SiNx纳米层合涂层的生长,结构和力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Coatings with nanoscale architectures, such as nanocomposites or nanolaminates, offer improved mechanical properties and resistance to radiation environments due to their increased interface area per unit volume. Here, we present a systematic study of the evolution, of structure, stress state and mechanical properties of nanoscale ZrN/SiNx multilayers with different thickness of elementary layers, grown at T-s = 300 degrees C by reactive magnetron sputter-deposition from Zr and Si3N4 targets. Both the multilayer period A (7-41 nm range) and ZrN thickness ratio,f(Me), (0.24-0.95 range) were varied. X-ray reflectivity and transmission electron microscopy revealed the presence of planar interfaces, with roughness lower than 1 nm, yielding to the formation of a highly periodic layer stacking throughout the entire film thickness. X-ray diffraction (XRD) show that the presence of amorphous SiNx layer (for elementary thickness h(a) >= 1 nm) induces a change in the preferred orientation of the cubic (B1-type) ZrN layers from (111) to (002), while the ZrN layer becomes X-ray amorphous at thickness h(Me) lower than 2 nm. Using in situ wafer curvature measurements we show that both SiNx and ZrN layers are growing under an intrinsic compressive stress state, of a constant value of -1 GPa for SiNx and varying from -5.7 to -4 GPa with increasing ZrN layer thickness. Nanoindentation tests revealed a gradual increase of the elastic modulus from 200 to 265 GPa with f(Me), while the hardness showed a maximum (H = 24.1 GPa) for the ZrN(8 nm)/SiNx(0.4 nm) multilayer, corresponding to an 3-4 GPa increase compared to monolithic ZrN (21.0 GPa) and Si3N4 (19.2 GPa) films. We ascribe this enhancement of mechanical properties to local epitaxy and stronger bonding at (001) ZrN/SiNx interfaces when the SiNx thickness reduces down to 0.4 nm, as confirmed by XRD results obtained from ZrN/SiNx superlattices grown on MgO (001) substrate. (C) 2016 Elsevier B.V. All rights reserved.
机译:具有纳米级结构的涂料,例如纳米复合材料或纳米层压板,由于其单位体积的界面面积增加,因此具有改进的机械性能和对辐射环境的抵抗力。在这里,我们对由Zr和Si3N4靶进行反应磁控溅射在Ts = 300摄氏度下生长的具有不同基本层厚度的纳米级ZrN / SiNx多层膜的演化,结构,应力状态和力学性能进行了系统研究。 。多层周期A(7-41nm范围)和ZrN厚度比f(Me)(0.24-0.95范围)都变化。 X射线反射率和透射电子显微镜显示出存在平面界面,其粗糙度低于1nm,从而形成了在整个膜厚度上堆叠的高度周期性的层。 X射线衍射(XRD)表明,非晶SiNx层(对于基本厚度h(a)> = 1 nm)的存在会导致立方(B1型)ZrN层的首选取向从(111)改变为(002),而ZrN层在小于2nm的厚度h(Me)处变为X射线非晶。使用原位晶片曲率测量结果,我们发现SiNx和ZrN层均在固有压缩应力状态下生长,SiNx的恒定值为-1 GPa,并且随着ZrN层厚度的增加在-5.7至-4 GPa之间变化。纳米压痕测试显示,f(Me)的弹性模量从200 GPa逐渐增加到265 GPa,而ZrN(8 nm)/ SiNx(0.4 nm)多层膜的硬度最高(H = 24.1 GPa),对应于与单片ZrN(21.0 GPa)和Si3N4(19.2 GPa)薄膜相比,增加了3-4 GPa。我们将这种机械性能的增强归因于当SiNx厚度减小至0.4 nm时在(001)ZrN / SiNx界面处的局部外延和更强的键合,这一点已通过从在MgO(001)衬底上生长的ZrN / SiNx超晶格获得的XRD结果证实。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号