首页> 外文期刊>Current computer-aided drug design >Molecular determinants of the bacterial resistance to fluoroquinolones: a computational study.
【24h】

Molecular determinants of the bacterial resistance to fluoroquinolones: a computational study.

机译:细菌对氟喹诺酮类药物耐药性的分子决定因素:一项计算研究。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Quinolones constitute a large class of antibacterial agents whose action is mediated through the formation of a ternary complex with DNA and either, DNA Gyrase or topoisomerase IV, resulting in the inhibition of DNA replication. In order to get a deeper insight into the features of the complex formation, we carried out docking studies of fifteen diverse quinolones to the cleaved topoisomerase IV-DNA complex. Docking studies were performed using the crystal structures of the cleaved complex with levofloxacin and moxifloxacin (pdb entries 3K9F and 2XKK, respectively) using the GOLD software. Ligands dock in positions similar to those of the crystal structures. Analysis of the results reveals that bound quinolones appear intercalated between the two nucleotides that are involved in the DNA cleavage and exhibit hydrogen bonds with Arg(117) and, the latter mediated though a water molecule. Arg(117) has not been described to be involved in resistance, since it is putatively involved in the enzymatic reaction and its mutation would be lethal for the organism. Mutants of Ser(79) exhibit resistance to quinolones which can be explained by the loss of an important anchoring point. Interestingly, quinolone resistance observed in Asp(83) mutants cannot be explained directly on the basis of the loss of a direct interaction, but could be explained on the basis of its involvement at the entrance of the ligands to their binding pocket since the residue is located at the mouth of the pocket. The results of the present study suggest that the 4-keto and 3-carboxyl groups of the fluoroquinolones bind a Mg(2+) before binding to the cleaved topoisomarase IV-DNA complex and use Asp(83) for entry into the binding pocket. Accordingly, mutations that do not conserve the binding capacity for the quinolone-Mg(2+) complex will prevent the binding of this class of ligands. The results we present here are also compared with the structure of PD0305970 a 2,4-dione active against the Ser(79) and Asp(83) mutants.
机译:喹诺酮类药物是一大类抗菌剂,其作用是通过与DNA以及DNA促旋酶或拓扑异构酶IV形成三元复合物来介导,从而抑制DNA复制。为了更深入地了解复合物形成的特征,我们进行了十五种不同喹诺酮与裂解的拓扑异构酶IV-DNA复合物的对接研究。使用GOLD软件使用含左氧氟沙星和莫西沙星(分别为pdb条目3K9F和2XKK)的裂解复合物的晶体结构进行对接研究。配体停靠在与晶体结构相似的位置。结果分析表明,结合的喹诺酮似乎插在参与DNA裂解的两个核苷酸之间,并与Arg(117)形成氢键,后者通过水分子介导。 Arg(117)尚未被证明与抗性有关,因为它被认为参与了酶促反应,其突变对生物体而言是致命的。 Ser(79)的突变体表现出对喹诺酮类药物的抗性,这可以通过失去重要的锚定点来解释。有趣的是,在Asp(83)突变体中观察到的喹诺酮耐药性不能根据直接相互作用的丧失而直接解释,而可以根据其在配体进入其结合口袋的入口的参与来解释,因为残基是位于口袋的嘴里。本研究的结果表明,氟喹诺酮类化合物的4-酮基和3-羧基在结合到裂解的拓扑异豆酶IV-DNA复合物上之前先结合Mg(2+),并使用Asp(83)进入结合袋。因此,不保留对喹诺酮-Mg(2+)的结合能力的突变的突变将阻止此类配体的结合。我们在这里提供的结果也与对Ser(79)和Asp(83)突变体具有活性的2,0-二酮PD0305970的结构进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号