首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Self-Assembly of Cysteine Dimers at the Gold Surface: A Computational Study of Competing Interactions
【24h】

Self-Assembly of Cysteine Dimers at the Gold Surface: A Computational Study of Competing Interactions

机译:半胱氨酸二聚体在金表面的自组装:竞争相互作用的计算研究。

获取原文
获取原文并翻译 | 示例
           

摘要

The only proteinogenic acid with a mercapto group, cysteine is the main participant in the binding of proteins and peptides to the surfaces of noble metals. A chiral molecule, it becomes a major player in surface patterning for chiral amplification, biosensing, and chiral catalysis. Here, we examine the interplay of molecule-surface and molecule-molecule interactions in the self-assembly process of monomers, dimers, and trimers of L-cysteine on a (1 X 2)-reconstructed Au(110) surface, and the implications for chiral recognition. Multiple adsorbed configurations of L-cysteine and L-cysteinate in neutral and zwitterionic forms were generated using molecular dynamics simulations, serving as starting points for further density functional theory (DFT)-based optimizations. We found that binding for both monomers and dimers was stronger at kink sites formed on the surface during the chemisorption process, and was unlikely to occur along the highly coordinated trough sites. In this, DFT calculations disagreed with MD simulations using centrosymmetric potentials, which tended to maximize coordination of the adsorbate groups, and ignore differences in reactivity of the various Au sites, unless specifically included in the force field. Kink-site bound homochiral L-cysteine dimers were particularly stable relative to both heterochiral and trimer structures, while molecules more weakly bound at more stable surface locations did not exhibit chiral recognition. If barriers to the diffusion of Au atoms along the surface can be overcome, the four-atom vacancy structures proposed by Kuhnle et al. (Nature 2002, 415, 891) provide reactive kink sites, ideally spaced for binding homochiral cysteinate dimers, with highly stable COOH-based hydrogen bonding.
机译:半胱氨酸是唯一带有巯基的蛋白原酸,是蛋白质和肽与贵金属表面结合的主要参与者。一个手性分子,它成为用于手性扩增,生物传感和手性催化的表面构图的主要参与者。在这里,我们研究了在(1 X 2)重构的Au(110)表面上L-半胱氨酸的单体,二聚体和三聚体的自组装过程中分子-表面和分子-分子相互作用的相互作用,及其含义用于手性识别。使用分子动力学模拟生成中性和两性离子形式的L-半胱氨酸和L-半胱氨酸的多种吸附构型,它们是进一步基于密度泛函理论(DFT)的优化的起点。我们发现,在化学吸附过程中在表面形成的扭结位点上,单体和二聚体的结合都更强,并且沿着高度配位的谷点位点不太可能发生。在这种情况下,DFT计算与使用中心对称电位的MD模拟不同,除非特别包括在力场中,否则该模拟倾向于最大化吸附基团的配位,并忽略各个Au位点的反应性差异。扭结位点结合的手性L-半胱氨酸二聚体相对于杂手性和三聚体结构特别稳定,而在较稳定的表面位置结合较弱的分子则没有手性识别。如果可以克服阻碍Au原子沿表面扩散的障碍,则Kuhnle等人提出的四原子空位结构。 (Nature 2002,415,891)提供了反应性扭结位点,其以高稳定的基于COOH的氢键结合而理想地隔开以结合同型手性半胱氨酸二聚体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号