首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet
【24h】

Solar Photoconversion Using Graphene/TiO2 Composites: Nanographene Shell on TiO2 Core versus TiO2 Nanoparticles on Graphene Sheet

机译:使用石墨烯/ TiO2复合材料的太阳能光电转换:TiO2核上的纳米石墨烯壳与石墨烯片上的TiO2纳米颗粒

获取原文
获取原文并翻译 | 示例
           

摘要

Size controlled nanographene oxides (NGOs; <50 nm) were prepared by a two-step oxidation process and NGOs were self-assembled with TiO2 nanoparticles to form the core/shell structure, Nanosized GO-coated TiO2 nanoparticles (NGOTs) were then reduced by a photocatalytic process under UV irradiation to obtain graphene-coated TiO2. This is clearly different from the typical graphene/TiO2 composite with the particles-on-a-sheet geometry and is the first study on the core/ shell structure of its kind. The physicochemical properties of NGOs and the reduced NGOTs (r-NGOTs) were character-ized by various analytical and spectroscopic methods (AFM, FTTR, XPS, TEM, EELS, etc.). The photocatalytic and photoelec-trochemical activities of r-NGOT were compared with a composite of r-GO/TiO2 that has TiO2 nanoparticles loaded on a larger graphene sheet (r-LGOT). The photocatalytic production of hydrogen was measured in the aqueous suspension of the composite photocatalyst under UV irradiation (A > 320 nm), and the photoelectrochemical behaviors were characterized using the electrode coated with the composite photocatalyst. The rates of H2 production and photocurrent generation were higher with r-NGOT than r-LGOT, which indicates that the presence of r-GO shell on the surface of TiO2 facilitates the interfacial electron transfer. The direct contact between r-NGO and TiO2 is maximized in r-NGOT by retarding the charge recombination and accelerating the electron transfer. The geometry of the core/shell structure should be effective in the design of a graphene/TiO2 composite for solar conversion applications.
机译:通过两步氧化工艺制备尺寸可控的纳米石墨烯氧化物(NGOs; <50 nm),并将NGOs与TiO2纳米颗粒自组装以形成核/壳结构,然后将纳米GO包覆的TiO2纳米颗粒(NGOTs)还原。在紫外线照射下进行光催化过程,得到石墨烯包覆的TiO2。这明显不同于典型的石墨烯/ TiO2复合材料(具有片上颗粒的几何形状),并且是对此类核/壳结构的首次研究。通过各种分析和光谱方法(AFM,FTTR,XPS,TEM,EELS等)表征了NGO和还原的NGOT(r-NGOT)的理化性质。将r-NGOT的光催化和光电化学活性与具有较大纳米石墨烯片(r-LGOT)的TiO2纳米颗粒的r-GO / TiO2复合材料进行了比较。在紫外光照射下(A> 320 nm)测量了复合光催化剂的水悬浮液中氢的光催化产生,并使用涂覆有复合光催化剂的电极表征了光电化学行为。 r-NGOT的H2产生速率和光电流产生速率高于r-LGOT,这表明TiO2表面上存在r-GO壳层促进了界面电子转移。在r-NGOT中,r-NGO和TiO2之间的直接接触通过延迟电荷复合并加速电子转移而得到最大化。核/壳结构的几何形状在设计用于太阳能转换应用的石墨烯/ TiO2复合材料时应该有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号