首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln~(~(3+))-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging
【24h】

Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln~(~(3+))-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging

机译:Ln〜(〜(3+))掺杂的NaYF4上转换纳米晶体的双光子上转换激光(扫描和宽视场)显微镜:对其性能和生物成像潜能的关键评价。

获取原文
获取原文并翻译 | 示例
           

摘要

We report a simple, yet effective method to disperse NaYF4 nanocrystals (NCs) doped with luminescent Ln~(~(3+)) ions in water and physiological buffers using an amphiphilic polymer poly(ethylene glycol) monooleate. These water-dispersible NCs were used for in vivo imaging by employing two-photon upconversion laser scanning microscopy (TPULSM) and two-photon upconversion wide field microscopy (TPUWFM) techniques. Using the 800 nm upconverted emission from Tm~(~(3+)) ions, we show that (i) TPULSM imaging can be performed up to a depth of~600 μm inside an agar-milk gel tissue phantom and (ii) the edges of the object can still be identified. At depths beyond 600 μm, we observed a drastic decrease in the lateral resolution. Images of a mouse lung tissue obtained using this technique resulted in a lateral resolution with which we could observe the capillaries surrounding the alveoli air caps. The images lacked optical sectioning due to the high power density (~2000 W/cm~2) necessary to achieve an adequate signal-to-noise ratio. In addition, the time taken to obtain these images was prolonged because of the slow scanning speed necessitated by the long lifetimes and the poor quantum yield of the upconversion process. Conversely, in vivo TPUWFM imaging using the same 800 nm emission of brain blood vessels of a mouse after skull thinning gave excellent lateral resolution to differentiate blood vessels separated by a few micrometers. In addition to this, optical sectioning was observed over a depth of 100 μm, which is the first instance of optical sectioning shown in in vivo imaging employing Ln~(~(3+))-doped NCs as imaging agents. Experiments with the aforementioned tissue phantom showed that imaging up to a depth of ~400 μm could be obtained with the 800 nm emission from Tm~(~(3+))/Yb~(~(3+)) codoped NaYF4 NCs with a lateral resolution that allows us to distinguish micrometer-sized biological structures. In contrast, when employing the green upconverted emission from Er~(~(3+))/Yb~(3+) codoped NaYF4 NCs, lateral resolution was completely lost at a depth of ~300 μm.
机译:我们报告了一种简单而有效的方法,使用两亲性聚合物聚乙二醇单油酸酯分散在水中和生理缓冲液中掺杂有发光Ln〜(〜(3+))离子的NaYF4纳米晶体(NCs)。这些水分散性NC通过采用两光子上转换激光扫描显微镜(TPULSM)和两光子上转换宽视野显微镜(TPUWFM)技术用于体内成像。使用来自Tm〜(〜(3+))离子的800 nm上转换发射,我们显示(i)TPULSM成像可以在琼脂-奶凝胶组织体模内部达到〜600μm的深度,并且(ii)物体的边缘仍然可以被识别。在深度超过600μm时,我们观察到横向分辨率急剧下降。使用此技术获得的小鼠肺组织图像产生了横向分辨率,利用该分辨率我们可以观察到肺泡气帽周围的毛细血管。由于获得足够的信噪比所需的高功率密度(〜2000 W / cm〜2),图像缺少光学切片。另外,由于长寿命和上转换过程的量子产率差而需要缓慢的扫描速度,从而延长了获取这些图像所需的时间。相反,在颅骨变薄后使用小鼠脑血管的相同800 nm发射的体内TPUWFM成像可提供出色的横向分辨率,以区分相隔数微米的血管。除此之外,在100μm的深度观察到光学切片,这是使用Ln〜(〜(3+))掺杂的NCs作为成像剂在体内成像中显示的光学切片的第一个实例。用上述组织模型进行的实验表明,用Tm〜(〜(3 +))/ Yb〜(〜(3+))共掺杂的NaYF4 NCs在800nm的辐射下可获得约400μm的成像。横向分辨率使我们能够区分微米级的生物结构。相比之下,当采用Er〜(〜(3 +))/ Yb〜(3+)共掺杂的NaYF4 NC的绿色向上转换发射光时,在〜300μm的深度处横向分辨率完全丧失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号