...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Quantum Chemical Prediction of Reaction Pathways and Rate Constants for Reactions of NO and NO2 with Monovacancy Defects on Graphite (0001) Surfaces
【24h】

Quantum Chemical Prediction of Reaction Pathways and Rate Constants for Reactions of NO and NO2 with Monovacancy Defects on Graphite (0001) Surfaces

机译:NO和NO2在石墨(0001)表面上具有单空位缺陷的反应的反应路径和速率常数的量子化学预测

获取原文
获取原文并翻译 | 示例
           

摘要

We present reaction pathways for adsorption reactions of NO and NO2 molecules in the vicinity of monovacancy defects on graphite (0001) based on quantum chemical potential energy surfaces (PESs) obtained by B3LYP and dispersion-augmented density-functional tight-binding (DFTB-D) methods. To model the graphite (0001) monovacancy defects, finite-size molecular model systems up to the size of dicircumcoronene (C_(95)H_(24)) were employed. We find that the reactions of NO_x on the monodefective graphite surface are initiated by rapid association processes with negligible barriers, leading to nitridation and oxidation Of the graphite surface, and eventually producing gaseous CO_x, NO, and CN species leaving from an even more defective graphite surface. On the basis of the computed reaction pathways, we predict reaction rate constants in the temperature range between 300 and 3000 K using Rice—Ramsperger—Kassel—Marcus theory. High-temperature quantum chemical molecular dynamics simulations at 3000 K based on on-the-fly DFTB-D energies and gradients support the results of our PES studies.
机译:我们基于B3LYP和弥散增强的密度泛函紧密结合(DFTB-D)获得的量子化学势能面(PES),提出了石墨上的空位缺陷附近的NO和NO2分子吸附反应的反应路径(0001) ) 方法。为了模拟石墨(0001)单空位缺陷,采用了大小不超过双环己烯(C_(95)H_(24))的有限尺寸分子模型系统。我们发现,单缺陷石墨表面上的NO_x反应是通过具有可忽略的势垒的快速缔合过程引发的,导致石墨表面的氮化和氧化,并最终产生气态的CO_x,NO和CN物种,而这些石墨甚至是缺陷更大的石墨。表面。基于计算的反应路径,我们使用莱斯-拉姆斯伯格-卡塞尔-马库斯理论预测300至3000 K温度范围内的反应速率常数。基于动态DFTB-D能量和梯度在3000 K下进行的高温量子化学分子动力学仿真,支持了我们的PES研究的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号