首页> 外文期刊>Current computer-aided drug design >A comparative study of drug resistance mechanism associated with active site and non-active site mutations: I388N and D425G mutants of Acetyl-Coenzyme-A carboxylase
【24h】

A comparative study of drug resistance mechanism associated with active site and non-active site mutations: I388N and D425G mutants of Acetyl-Coenzyme-A carboxylase

机译:与活性位点和非活性位点突变相关的耐药机制的比较研究:乙酰辅酶A羧化酶的I388N和D425G突变体

获取原文
获取原文并翻译 | 示例
           

摘要

A major concern in the development of acetyl-CoA carboxylase-inhibiting (ACCase; EC 6.4.1.2) herbicides is the emergence of resistance as a result of the selection of distinct mutations within the CT domain. Mutations associated with resistance have been demonstrated to include both active sites and non-active sites, including Ile-1781-Leu, Trp-2027-Cys, Ile-2041-Asn, Asp-2078-Gly, and Gly-2096-Ala (numbered according to the Alopecurus myosuroides plastid ACCase). In the present study, extensive computational simulations, including molecular dynamics (MD) simulations and molecular mechanics-Poisson-Boltzmann surface area (MM/PBSA) calculations, were carried out to compare the molecular mechanisms of active site mutation (I388N) and non-active site mutation (D425G) in Alopecurus myosuroides resistance to some commercial herbicides targeting ACCase, including haloxyfop (HF), diclofop (DF) and fenoxaprop (FR). All of the computational model and energetic results indicated that both I388N and D425G mutations have effects on the conformational change of the binding pocket. The π-π interaction between ligand and Phe377 and Tyr161' residues, which make an important contribution to the binding affinity, was decreased after mutation. As a result, the mutant-type ACCase has a lower affinity for the inhibitor than the wild-type enzyme, which accounts for the molecular basis of herbicidal resistance. The structural and mechanistic insights obtained from the present study will deepen our understanding of the interactions between ACCase and herbicides, which provides a molecular basis for the future design of a promising inhibitor with low resistance risk.
机译:在开发抑制乙酰辅酶A羧化酶(ACCase; EC 6.4.1.2)的除草剂中,一个主要的担忧是由于在CT域内选择了独特的突变而产生了抗药性。已证明与抗性相关的突变包括活性位点和非活性位点,包括Ile-1781-Leu,Trp-2027-Cys,Ile-2041-Asn,Asp-2078-Gly和Gly-2096-Ala(根据Alopecurus myosuroides质体ACCase编号)。在本研究中,进行了广泛的计算模拟,包括分子动力学(MD)模拟和分子力学-泊松-玻尔兹曼表面积(MM / PBSA)计算,比较了活性位点突变(I388N)和非活性位点突变的分子机制。活性的位点突变(D425G)对某些针对ACCase的商业除草剂具有抗性,包括除草灵(HF),双氯芬(DF)和非诺沙普(FR)。所有的计算模型和高能结果表明,I388N和D425G突变均对结合口袋的构象变化有影响。配体与Phe377和Tyr161'残基之间的π-π相互作用(对结合亲和力起重要作用)在突变后降低。结果,突变型ACCase对抑制剂的亲和力低于野生型酶,这解释了除草抗性的分子基础。从本研究中获得的结构和机理方面的见解将加深我们对ACCase与除草剂之间相互作用的理解,这为将来设计具有低耐药风险的抑制剂提供了分子基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号