...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Elucidating the Energetics of Entropically Driven Protein-Ligand Association: Calculations of Absolute Binding Free Energy and Entropy
【24h】

Elucidating the Energetics of Entropically Driven Protein-Ligand Association: Calculations of Absolute Binding Free Energy and Entropy

机译:阐明熵驱动的蛋白质-配体缔合的能量学:绝对结合自由能和熵的计算

获取原文
获取原文并翻译 | 示例

摘要

The binding of proteins and ligands is generally associated with the loss of translational, rotational, and conformational entropy. In many cases, however, the net entropy change due to binding is positive. To develop a deeper understanding of the energetics of entropically driven protein-ligand binding, we calculated the absolute binding free energies and binding entropies for two HIV-1 protease inhibitors Nelfinavir and Amprenavir using the double-decoupling method with molecular dynamics simulations in explicit solvent. For both ligands, the calculated absolute binding free energies are in general agreement with experiments. The statistical error in the computed AG(bind) due to convergence problem is estimated to be ≥2 kcal/mol. The decomposition of free energies indicates that, although the binding of Nelfinavir is driven by nonpolar interaction, Amprenavir binding benefits from both nonpolar and electrostatic interactions. The calculated absolute binding entropies show that (1) Nelfinavir binding is driven by large entropy change and (2) the entropy of Amprenavir binding is much less favorable compared with that of Nelfinavir. Both results are consistent with experiments. To obtain qualitative insights into the entropic effects, we decomposed the absolute binding entropy into different contributions based on the temperature dependence of free energies along different legs of the thermodynamic pathway. The results suggest that the favorable entropic contribution to binding is dominated by the ligand desolvation entropy. The entropy gain due to solvent release from binding site appears to be more than offset by the reduction of rotational and vibrational entropies upon binding.
机译:蛋白质和配体的结合通常与翻译,旋转和构象熵的损失有关。然而,在许多情况下,由于结合引起的净熵变化为正。为了加深对熵驱动的蛋白质-配体结合的能量学的了解,我们使用双去耦方法和显式溶剂中的分子动力学模拟,计算了两种HIV-1蛋白酶抑制剂Nelfinavir和Amprenavir的绝对结合自由能和结合熵。对于两种配体,计算的绝对结合自由能与实验基本一致。由于收敛问题,计算的AG(bind)中的统计误差估计为≥2kcal / mol。自由能的分解表明,尽管奈非那韦的结合是由非极性相互作用驱动的,但安普那韦的结合受益于非极性和静电相互作用。计算出的绝对结合熵表明,(1)奈非那韦的结合是由较大的熵变化驱动的;(2)与奈非那韦相比,氨普那韦的结合熵差得多。两种结果均与实验一致。为了获得对熵效应的定性见解,我们基于沿着热力学路径不同分支的自由能对温度的依赖性,将绝对结合熵分解为不同的贡献。结果表明,对结合的有利熵贡献主要由配体去溶剂化熵决定。由于溶剂从结合位点释放而产生的熵增加似乎被结合时旋转和振动熵的减少所抵消。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号