...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Comparing Simulated and Experimental Translation and Rotation Constants: Range of Validity for Viscosity Scaling
【24h】

Comparing Simulated and Experimental Translation and Rotation Constants: Range of Validity for Viscosity Scaling

机译:比较模拟和实验平移和旋转常数:粘度标度的有效范围

获取原文
获取原文并翻译 | 示例

摘要

Proper simulation of dynamic properties, including molecular diffusion, is an important goal of empirical force fields. However, the widely used TIP3P water model does not reproduce the experimental viscosity of water. Consequently, scaling of simulated diffusion constants of solutes in aqueous solutions is required to effectively compare them with experiment. It is proposed that scaling by the ratio of viscosities of model and real water is appropriate in the regime where the concentration dependence of simulated and experimental solution viscosities is parallel. With this ansatz. viscosity scaling can be carried out for glucose and trehalose up to 20 wt % for simulations carried out with the CHARMM additive carbohydrate force field C35 and T1P3P water; above this value, the concentration dependence of simulated viscosities lags that of experiment, and scaling is not advised. Scaled translational diffusion constants for glucose and the disaccharides trehalose, maltose, and melibiose at low concentration agree nearly quantitatively with experiment, as do NMR ~(13)C T1's for glucose, trehalose, and maltose; these results support the use of C35 for simulations of sugar transport properties at low concentration. At high concentrations the scaled diffusion constants for glucose and trehalose underestimate and overestimate experiment, respectively. Hydrodynamic bead model calculations indicate a hydration level of approximately 1 water/hydroxyl for glucose. Patterns for the disaccharides are more complicated, though trehalose binds 0.5 to 1 more water than does maltose depending on the analysis.
机译:正确模拟动力学特性,包括分子扩散,是经验力场的重要目标。但是,广泛使用的TIP3P水模型不能重现水的实验粘度。因此,需要按比例缩放溶质在水溶液中的模拟扩散常数,以有效地将它们与实验进行比较。建议在模拟和实验溶液粘度的浓度依赖性平行的情况下,通过模型与真实水的粘度比进行缩放是合适的。有了这个ansatz。对于使用CHARMM添加剂碳水化合物力场C35和T1P3P水进行的模拟,可以对葡萄糖和海藻糖进行粘度缩放,最高可达20 wt%。高于此值,模拟粘度的浓度依赖性要比实验滞后,因此不建议进行换算。在低浓度下,葡萄糖和二糖海藻糖,麦芽糖和蜜二糖的标度翻译扩散常数与实验几乎在数量上一致,葡萄糖,海藻糖和麦芽糖的NMR〜(13)C T1也是如此。这些结果支持使用C35模拟低浓度下的糖转运特性。在高浓度下,葡萄糖和海藻糖的比例扩散常数分别低估和高估了实验。流体动力学珠模型的计算表明葡萄糖的水合水平约为1个水/羟基。尽管根据分析,海藻糖与麦芽糖结合的水比麦芽糖多结合0.5至1,但二糖的模式更为复杂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号