首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels
【24h】

Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels

机译:模型离子通道的动态晶格蒙特卡罗模拟与介电自能泊松-能斯特-普朗克连续谱理论的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Simulations of ion permeation through narrow model cylindrical channels are carried out using a dynamic lattice Monte Carlo (DLMC) algorithm (equivalent to high friction Langevin dynamics) for the time evolution of the ions in the system on the basis of a careful evaluation of the electrostatic forces acting upon each particle. To mimic the process of ion transport through protein channels, the cylindrical channel is embedded in a dielectric slab (representing a lipid bilayer membrane). The protein/membrane structure is taken to be rigid, and the water solvent is treated as a dielectric continuum. Results of these simulations are compared to corresponding results obtained via Poisson-Nernst-Planck (PNP) theory. In the PNP approach, the mobile ions are treated as a continuous charge density, and the electrostatic force on each ion is treated in an approximate fashion. Significant differences between DLMC and PNP results are found, with the degree of discrepancy increasing as the radius of the ion channel is reduced. A major source of error is traced to the neglect in the effective PNP potential of the dielectric self-energy (DSE), which is due to the interaction of each permeant ion with the dielectrically inhomogeneous environment provided by the water/channel/membrane system. When this static single-particle potential is precalculated and added to the effective potential used in PNP theory, substantial improvement in the quality of the results for current-voltage curves and steady-state concentrations is obtained. In fact, the results obtained by this approach, termed dielectric self-energy Poisson-Nernst-Planck (DSEPNP) theory, agree nearly quantitatively with DLMC simulation results over the entire range of channel radii (4-12 A) studied.
机译:使用动态晶格蒙特卡罗(DLMC)算法(等效于高摩擦Langevin动力学)对离子在窄模型圆柱通道中的渗透进行模拟,以便在仔细评估静电的基础上对系统中的离子进行时间演化。作用在每个粒子上的力。为了模拟离子通过蛋白质通道的传输过程,将圆柱形通道嵌入电介质平板(代表脂质双层膜)中。蛋白质/膜结构被认为是刚性的,水溶剂被视为介电连续体。将这些模拟的结果与通过Poisson-Nernst-Planck(PNP)理论获得的相应结果进行比较。在PNP方法中,将移动离子视为连续电荷密度,并且以近似方式处理作用在每个离子上的静电力。发现DLMC和PNP结果之间存在显着差异,差异程度随离子通道半径的减小而增加。误差的主要根源在于对介电自能(DSE)的有效PNP电位的忽视,这是由于每种渗透离子与水/通道/膜系统所提供的介电非均质环境之间的相互作用所致。当预先计算出该静态单粒子电势并将其添加到PNP理论中使用的有效电势时,可获得电流-电压曲线和稳态浓度的结果质量的显着改善。实际上,通过这种方法获得的结果,称为介电自能泊松-能斯特-普朗克(DSEPNP)理论,在研究的整个通道半径范围(4-12 A)上几乎与DLMC仿真结果基本一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号