首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes
【24h】

Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes

机译:InP和准II型InP / CdS核/壳量子点-分子受体复合物中的界面电荷分离和重组

获取原文
获取原文并翻译 | 示例
       

摘要

Recent studies of group II~-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III~-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III~-V and II~-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV~(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV~(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV~(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III~-V and II~-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.
机译:对CdSe / CdS核/壳量子点(QDs)或棒内点纳米棒等II〜-VI族胶体半导体异质结构的最新研究表明,II型和准II型能带排列可促进电子转移并降低速度QD-分子电子受体复合物中的低电荷重组。为了探索这种波动函数工程方法控制电荷转移性质的一般适用性,我们研究了InP(III〜-V族半导体)和InP / CdS核/壳(III〜-族之间的异质结构)中的激子弛豫和离解动力学。 V和II〜-VI半导体的量子点的瞬态吸收光谱法。我们显示InP / CdS QD表现出准II型能带排列,其中1S电子散布在整个核和壳中,而1S孔则限制在InP核中。在InP-甲基紫精(MV〜(2+))配合物中,量子点中的激子可以通过超快电子从1S电子能级转移到MV〜(2+)(平均时间常数为11.4 ps)以及1P和更高的电子能级(时间常数为0.39 ps),然后进行电荷复合以在其基态(平均时间常数为47.1 ns)下再生该复合物。相比之下,InP / CdS-MV〜(2+)配合物表现出相似的超快电荷分离和慢5倍的较慢的电荷重组速率,这与这些异质结构中的准II型能带排列一致。该结果表明,III--V族和II--VI族半导体的纳米异质结构中的波函数工程提供了一种有前途的方法,可以优化其光收集和电荷分离以用于太阳能转换应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号