...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Encapsulation of carbon chain molecules in single-walled carbon nanotubes
【24h】

Encapsulation of carbon chain molecules in single-walled carbon nanotubes

机译:碳链分子在单壁碳纳米管中的包封

获取原文
获取原文并翻译 | 示例

摘要

The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbonbased chain molecules, namely, polyynes (C_mH_2, m = 4, 6, 10) and the dehydrogenated forms C_(10)H and C_(10), as well as hexane (C_6H_(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C_(10)H_2, C_(10)H,C_(10), C_6H_2, C_4H _2, andC_6H_(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C_(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C_(10)H inside an SWNT under an external field. Because C10H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.
机译:碳纳米管内部的真空空间为异物的包含,运输和功能化提供了有趣的可能性。使用第一原理密度泛函计算,我们显示了线性碳基链分子,即多炔(C_mH_2,m = 4,6,10)和脱氢形式C_(10)H和C_(10),以及己烷( C_6H_(14))可以自发地封装在带有悬空键或以氢原子封端的端部开放式单壁碳纳米管(SWNT)中,就像被抽入真空吸尘器一样。将C_(10)H_2,C_(10)H,C_(10),C_6H_2,C_4H _2和C_6H_(14)封装在(10,0)之字形SWNT内时的能量增益为1.48、2.04、2.18,分别为1.05、0.55和1.48 eV。当这些分子沿管轴进入更宽(10,10)的扶手椅SWNT内时,它们既不会遇到能量增加,也不会遇到能量垒。当他们接近内部的管壁时,会获得能量的增加。可以将三个己烷分子彼此平行(即嵌套)封装在(10,10)SWNT中,其能量增益为1.98 eV。三个己烷分子可表现出旋转运动。 SWNT内部碳链分子稳定的原因之一是大面积的弱波函数重叠。另一个原因涉及分子依赖性,即在多炔的情况下是四极-四极相互作用,而在脱氢形式的情况下是从SWNT转移电子电荷。单壁碳纳米管内部非常平坦的势能表面表明摩擦非常低,单壁碳纳米管内部的空间为碳链分子的分子传输提供了理想的环境。目前的理论结果肯定与最近的实验结果一致。此外,C_(10)的封装使SWNT成为(纯碳制成的)p型受体。与本系统相关的另一有趣的可能性是在外场下SWNT内部的C_(10)H的方向受控的传输。由于C10H具有电偶极矩,因此有望在梯度电场下移动。最后,我们导出了开放式SWNT内部和外部的线性链分子的熵,以讨论在有限温度下将SWNT内部包括线性链分子的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号