首页> 外文期刊>The Journal of Chemical Physics >DNA conformation in nanochannels: Monte Carlo simulation studies using a primitive DNA model
【24h】

DNA conformation in nanochannels: Monte Carlo simulation studies using a primitive DNA model

机译:纳米通道中的DNA构象:使用原始DNA模型的蒙特卡洛模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

We have performed canonical ensemble Monte Carlo simulations of a primitive DNA model to study the conformation of 2.56 ~ 21.8 m long DNA molecules confined in nanochannels at various ionic concentrations with the comparison of our previous experimental findings. In the model, the DNA molecule is represented as a chain of charged hard spheres connected by fixed bond length and the nanochannels as planar hard walls. System potentials consist of explicit electrostatic potential along with short-ranged hard-sphere and angle potentials. Our primitive model system provides valuable insight into the DNA conformation, which cannot be easily obtained from experiments or theories. First, the visualization and statistical analysis of DNA molecules in various channel dimensions and ionic strengths verified the formation of locally coiled structures such as backfolding or hairpin and their significance even in highly stretched states. Although the folding events mostly occur within the region of ~0.5 m from both chain ends, significant portion of the events still take place in the middle region. Second, our study also showed that two controlling factors such as channel dimension and ionic strength widely used in stretching DNA molecules have different influence on the local DNA structure. Ionic strength changes local correlation between neighboring monomers by controlling the strength of electrostatic interaction (and thus the persistence length of DNA), which leads to more coiled local conformation. On the other hand, channel dimension controls the overall stretch by applying the geometric constraint to the non-local DNA conformation instead of directly affecting local correlation. Third, the molecular weight dependence of DNA stretch was observed especially in low stretch regime, which is mainly due to the fact that low stretch modes observed in short DNA molecules are not readily accessible to much longer DNA molecules, resulting in the increase in the stretch of longer DNA molecules.
机译:我们已经对原始DNA模型进行了标准的整体蒙特卡罗模拟,研究了在不同离子浓度下限制在纳米通道中的2.56〜21.8 m长的DNA分子的构象,并与我们以前的实验结果进行了比较。在模型中,DNA分子表示为通过固定键长连接的带电硬球链,而纳米通道则表示为平面硬壁。系统电势由显式静电势以及短距离硬球和角电势组成。我们的原始模型系统可提供有关DNA构象的宝贵见解,而这些构象无法从实验或理论中轻易获得。首先,对各种通道尺寸和离子强度的DNA分子的可视化和统计分析验证了局部卷曲结构(例如向后折叠或发夹结构)的形成及其在高度拉伸状态下的重要性。尽管折叠事件大多发生在距链两端约0.5 m的区域内,但大部分事件仍发生在中间区域。其次,我们的研究还表明,广泛用于拉伸DNA分子的两个控制因素(例如通道尺寸和离子强度)对局部DNA结构具有不同的影响。离子强度通过控制静电相互作用的强度(以及DNA的持久长度)来改变相邻单体之间的局部相关性,从而导致更多的螺旋形局部构象。另一方面,通道尺寸通过将几何约束应用于非局部DNA构象而不是直接影响局部相关性来控制总体延伸。第三,观察到DNA拉伸的分子量依赖性,尤其是在低拉伸模式下,这主要是由于以下事实:在短DNA分子中观察到的低拉伸模式不易为更长的DNA分子所利用,从而导致拉伸增加更长的DNA分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号