首页> 外文期刊>The Journal of Chemical Physics >Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril
【24h】

Grid inhomogeneous solvation theory: Hydration structure and thermodynamics of the miniature receptor cucurbit[7]uril

机译:网格非均匀溶剂化理论:微型受体葫芦[7] uril的水合结构和热力学

获取原文
获取原文并翻译 | 示例
           

摘要

The displacement of perturbed water upon binding is believed to play a critical role in the thermodynamics of biomolecular recognition, but it is nontrivial to unambiguously define and answer questions about this process. We address this issue by introducing grid inhomogeneous solvation theory (GIST), which discretizes the equations of inhomogeneous solvation theory (IST) onto a threedimensional grid situated in the region of interest around a solute molecule or complex. Snapshots from explicit solvent simulations are used to estimate localized solvation entropies, energies, and free energies associated with the grid boxes, or voxels, and properly summing these thermodynamic quantities over voxels yields information about hydration thermodynamics. GIST thus provides a smoothly varying representation of water properties as a function of position, rather than focusing on hydration sites where solvent is present at high density. It therefore accounts for full or partial displacement of water from sites that are highly occupied by water, as well as for partly occupied and water-depleted regions around the solute. GIST can also provide a well-defined estimate of the solvation free energy and therefore enables a rigorous end-states analysis of binding. For example, one may not only use a first GIST calculation to project the thermodynamic consequences of displacing water from the surface of a receptor by a ligand, but also account, in a second GIST calculation, for the thermodynamics of subsequent solvent reorganization around the bound complex. In the present study, a first GIST analysis of the molecular host cucurbit[7]uril is found to yield a rich picture of hydration structure and thermodynamics in and around this miniature receptor. One of the most striking results is the observation of a toroidal region of high water density at the center of the host's nonpolar cavity. Despite its high density, the water in this toroidal region is disfavored energetically and entropically, and hence may contribute to the known ability of this small receptor to bind guest molecules with unusually high affinities. Interestingly, the toroidal region of high water density persists even when all partial charges of the receptor are set to zero. Thus, localized regions of high solvent density can be generated in a binding site without strong, attractive solute-solvent interactions.[http://dx.doi.org/10.1063/1.4733951]
机译:认为结合后扰动的水的置换在生物分子识别的热力学中起着关键作用,但是明确定义和回答有关此过程的问题并非无关紧要。我们通过引入网格非均匀溶剂化理论(GIST)解决此问题,该理论将非均匀溶剂化理论(IST)的方程离散化到位于感兴趣区域中围绕溶质分子或复合物的三维网格上。来自显式溶剂模拟的快照用于估计与网格盒或体素关联的局部溶剂化熵,能量和自由能,并适当地对这些体素上的这些热力学量求和,得出有关水合热力学的信息。因此,GIST提供了作为位置函数的水属性的平滑变化表示,而不是专注于高密度存在溶剂的水合位点。因此,它解释了水被高水位以及溶质周围的部分水位和缺水区域的水全部或部分置换。 GIST还可以提供对溶剂化自由能的明确定义,因此可以对结合进行严格的最终状态分析。例如,不仅可以使用第一个GIST计算来预测配体从受体表面置换水的热力学结果,而且可以在第二个GIST计算中考虑到随后围绕结合物的溶剂重组的热力学。复杂。在本研究中,首次对分子宿主葫芦[7]尿嘧啶进行了GIST分析,得出了该微型受体内部及其周围水合结构和热力学的丰富图像。最惊人的结果之一是观察到宿主非极性腔中心高水密度的环形区域。尽管其高密度,该环形区域中的水在能量上和熵上都是不利的,因此可能有助于这种小受体以异常高的亲和力结合客体分子的已知能力。有趣的是,即使受体的所有部分电荷都设为零,高水密度的环形区域仍然存在。因此,可以在结合位点中产生高溶剂密度的局部区域,而没有强烈的,有吸引力的溶质-溶剂相互作用。[http://dx.doi.org/10.1063/1.4733951]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号