...
首页> 外文期刊>The Journal of Chemical Physics >Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers
【24h】

Buoyancy-driven convection around exothermic autocatalytic chemical fronts traveling horizontally in covered thin solution layers

机译:在有盖薄溶液层中水平移动的放热自催化化学前沿周围的浮力驱动对流

获取原文
获取原文并翻译 | 示例
           

摘要

Spatial variations of concentrations and temperature across exothermic chemical fronts can initiate buoyancy-driven convection. We investigate here theoretically the spatiotemporal dynamics arising from such a coupling between exothermic autocatalytic reactions, diffusion, and buoyancy-driven flows when an exothermic autocatalytic front travels perpendicularly to the gravity field in a thin solution layer. To do so, we numerically integrate the incompressible Stokes equations coupled to evolution equations for the concentration of the autocatalytic product and temperature through buoyancy terms proportional to, respectively, a solutal R_C and a thermal R_T Rayleigh number. We show that exothermic fronts can exhibit new types of dynamics in the presence of convection with regard to the isothermal system. In the cooperative case (R_C and R_T are of the same sign), the dynamics asymptotes to one vortex surrounding, deforming, and accelerating the front much like in the isothermal case. However, persistent local stratification of heavy zones over light ones can be observed at the rear of the front when the Lewis number Le )ratio of thermal diffusivity over molecular diffusion) is nonzero. When the solutal and thermal effects are antagonistic (R_C and R_T of opposite sign), temporal oscillations of the concentration, temperature, and velocity fields can, in some cases, be observed in a reference frame moving with the front. The various dynamical regimes are discussed as a function of R_C, R_T, and Le.
机译:放热化学前沿的浓度和温度的空间变化会引发浮力驱动的对流。我们在这里理论上研究由放热自催化前沿垂直于重力场在薄溶液层中传播时,放热自催化反应,扩散和浮力驱动的流动之间的这种耦合引起的时空动力学。为此,我们将不可压缩的斯托克斯方程与演化方程进行数值积分,以通过分别与溶质R_C和热R_T瑞利数成比例的浮力项来计算自催化产物和温度的浓度。我们表明,在等温系统对流的存在下,放热前沿可以展现出新型的动力学。在协作情况下(R_C和R_T具有相同的符号),动力学渐近到一个涡旋,围绕,变形和加速了锋面,就像在等温情况下一样。但是,当刘易斯数Le(分子扩散对分子扩散的比率)不为零时,可以在前面的后部观察到较重区域上较重区域的持续局部分层。当溶液和热的作用相反时(R_C和R_T的符号相反),在某些情况下,可以在随前移的参考框架中观察到浓度,温度和速度场的时间振动。根据R_C,R_T和Le讨论了各种动力学机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号