首页> 外文期刊>The Journal of Chemical Physics >Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers
【24h】

Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers

机译:在覆盖的水平溶液层中行进的化学前沿周围的浮力驱动的对流

获取原文
获取原文并翻译 | 示例
           

摘要

Density differences across an autocatalytic chemical front traveling horizontally in covered thin layers of solution trigger hydrodynamic flows which can alter the concentration profile. We theoretically investigate the spatiotemporal evolution and asymptotic dynamics resulting from such an interplay between isothermal chemical reactions, diffusion, and buoyancy-driven convection. The studied model couples the reaction-diffusion-convection evolution equation for the concentration of an autocatalytic species to the incompressible Stokes equations ruling the evolution of the flow velocity in a two-dimensional geometry. The dimensionless parameter of the problem is a solutal Rayleigh number constructed upon the characteristic reaction-diffusion length scale. We show numerically that the asymptotic dynamics is one steady vortex surrounding, deforming, and accelerating the chemical front. This chemohydrodynamic structure propagating at a constant speed is quite different from the one obtained in the case of a pure hydrodynamic flow resulting from the contact between two solutions of different density or from the pure reaction-diffusion planar traveling front. The dynamics is symmetric with regard to the middle of the layer thickness for positive and negative Rayleigh numbers corresponding to products, respectively, lighter or heavier than the reactants. A parametric study shows that the intensity of the flow, the propagation speed, and the deformation of the front are increasing functions of the Rayleigh number and of the layer thickness. In particular, the asymptotic mixing length and reaction-diffusion-convection speed both scale as root Ra for Ra > 5. The velocity and concentration fields in the asymptotic dynamics are also found to exhibit self-similar properties with Ra. A comparison of the dynamics in the case of a monostable versus bistable kinetics is provided. Good agreement is obtained with experimental data on the speed of iodate-arsenous acid fronts propagating in horizontal capillaries. We furthermore compare the buoyancy-driven dynamics studied here to Marangoni-driven deformation of traveling chemical fronts in solution open to the air in the absence of gravity previously studied in the same geometry [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)]. (c) 2007 American Institute of Physics.
机译:在覆盖的溶液薄层中水平传播的自催化化学前沿的密度差异会触发流体动力学流动,从而改变浓度曲线。我们从理论上研究了等温化学反应,扩散和浮力驱动对流之间的相互作用所引起的时空演化和渐近动力学。所研究的模型将用于自催化物质浓度的反应扩散对流演化方程与决定二维几何形状中流速变化的不可压缩Stokes方程耦合。问题的无量纲参数是基于特征反应扩散长度尺度的溶质瑞利数。我们用数字显示渐近动力学是围绕,变形和加速化学前沿的一个稳定旋涡。这种以恒定速度传播的化学流体力学结构与在纯流体力学流的情况下获得的结构完全不同,该纯流体力学流是由于两种不同密度的溶液之间的接触或从纯反应扩散平面行进前沿而产生的。对于分别对应于比反应物轻或更重的产物的正和负瑞利数,动力学关于层厚度的中间是对称的。参数研究表明,流动强度,传播速度和前沿变形是瑞利数和层厚度的增加函数。特别是,当Ra> 5时,渐近混合长度和反应扩散-对流速度均以根Ra表示。渐近动力学中的速度场和浓度场也与Ra表现出自相似特性。提供了单稳态和双稳态动力学情况下的动力学比较。在水平毛细管中碘酸盐-亚砷酸前沿传播速度的实验数据方面取得了很好的一致性。我们进一步将浮力驱动的动力学与Marangoni驱动的化学前锋在没有重力的情况下在相同几何条件下向空中开放的溶液中行进的化学变形进行了比较[L. Rongy和A. De Wit,《化学杂志》物理124,164705(2006)]。 (c)2007年美国物理研究所。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号