首页> 外文期刊>The Journal of Chemical Physics >A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals
【24h】

A new model for Overhauser enhanced nuclear magnetic resonance using nitroxide radicals

机译:利用氮氧化物自由基增强Overhauser核磁共振的新模型

获取原文
获取原文并翻译 | 示例
           

摘要

Nitroxide free radicals are the most commonly used source for dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) experiments and are also exclusively employed as spin labels for electron spin resonance (ESR) spectroscopy of diamagnetic molecules and materials. Nitroxide free radicals have been shown to have strong dipolar coupling to H-1 in water, and thus result in large DNP enhancement of H-1 NMR signal via the well known Overhauser effect. The fundamental parameter in a DNP experiment is the coupling factor, since it ultimately determines the maximum NMR signal enhancements which can be achieved. Despite their widespread use, measurements of the coupling factor of nitroxide free radicals have been inconsistent, and current models have failed to successfully explain our experimental data. We found that the inconsistency in determining the coupling factor arises from not taking into account the characteristics of the ESR transitions, which are split into three (or two) lines due to the hyperfine coupling of the electron to the N-14 nuclei (or N-15) of the nitric oxide radical. Both intermolecular Heisenberg spin exchange interactions as well as intramolecular nitrogen nuclear spin relaxation mix the three (or two) ESR transitions. However, neither effect has been taken into account in any experimental studies on utilizing or quantifying the Overhauser driven DNP effects. The expected effect of Heisenberg spin exchange on Overhauser enhancements has already been theoretically predicted and observed by Bates and Drozdoski [J. Chem. Phys. 67, 4038 (1977)]. Here, we present a new model for quantifying Overhauser enhancements through nitroxide free radicals that includes both effects on mixing the ESR hyperfine states. This model predicts the maximum saturation factor to be considerably higher by the effect of nitrogen nuclear spin relaxation. Because intramolecular nitrogen spin relaxation is independent of the nitroxide concentration, this effect is still significant at low radical concentrations where electron spin exchange is negligible. This implies that the only correct way to determine the coupling factor of nitroxide free radicals is to measure the maximum enhancement at different concentrations and extrapolate the results to infinite concentration. We verify our model with a series of DNP experimental studies on H-1 NMR signal enhancement of water by means of N-14 as well as N-15 isotope enriched nitroxide radicals.
机译:一氧化氮自由基是动态核极化(DNP)增强核磁共振(NMR)实验的最常用来源,并且还专门用作抗磁性分子和材料的电子自旋共振(ESR)光谱的自旋标记。已显示一氧化氮自由基与水中的H-1具有很强的偶极耦合性,因此通过众所周知的Overhauser效应导致H-1 NMR信号的DNP大大增强。 DNP实验中的基本参数是耦合因子,因为它最终决定了可以实现的最大NMR信号增强。尽管已被广泛使用,但对氮氧化物自由基的偶联因子的测量一直不一致,并且当前的模型未能成功地解释我们的实验数据。我们发现确定耦合因子的不一致是由于未考虑ESR跃迁的特性而引起的,由于电子与N-14原子核(或N的超精细耦合)而将ESR跃迁分为三(或两)行。 -15)的一氧化氮自由基。分子间海森堡自旋交换相互作用以及分子内氮核自旋弛豫都将三个(或两个)ESR跃迁混合在一起。但是,在利用或量化Overhauser驱动的DNP效果的任何实验研究中,都没有考虑任何效果。 Bates和Drozdoski已在理论上预测并观察到海森堡自旋交换对Overhauser增强的预期效果[J.化学物理67,4038(1977)]。在这里,我们提出了一种新的模型,用于通过氮氧化物自由基对Overhauser增强进行定量,其中包括对混合ESR超精细状态的两种影响。该模型通过氮核自旋弛豫的作用预测最大饱和度要高得多。由于分子内氮的自旋弛豫与氮氧化物的浓度无关,因此在电子自旋交换可忽略的低自由基浓度下,这种作用仍然很明显。这意味着确定氮氧化物自由基偶联因子的唯一正确方法是在不同浓度下测量最大增强,并将结果外推到无限浓度。我们通过一系列DNP实验研究验证了我们的模型,该研究通过N-14以及N-15同位素富集的一氧化氮自由基对水进行H-1 NMR信号增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号