首页> 外文期刊>The Journal of Chemical Physics >Probing the limits of accuracy in electronic structure calculations: Is theory capable of results uniformly better than 'chemical accuracy'?
【24h】

Probing the limits of accuracy in electronic structure calculations: Is theory capable of results uniformly better than 'chemical accuracy'?

机译:探究电子结构计算准确性的极限:理论是否能够统一地胜过“化学准确性”?

获取原文
获取原文并翻译 | 示例
           

摘要

Current limitations in electronic structure methods are discussed from the perspective of their potential to contribute to inherent uncertainties in predictions of molecular properties, with an emphasis on atomization energies (or heats of formation). The practical difficulties arising from attempts to achieve high accuracy are illustrated via two case studies: the carbon dimer (C-2) and the hydroperoxyl radical (HO2). While the HO2 wave function is dominated by a single configuration, the carbon dimer involves considerable multiconfigurational character. In addition to these two molecules, statistical results will be presented for a much larger sample of molecules drawn from the Computational Results Database. The goal of this analysis will be to determine if a combination of coupled cluster theory with large 1-particle basis sets and careful incorporation of several computationally expensive smaller corrections can yield uniform agreement with experiment to better than "chemical accuracy" (+/- 1 kcal/mol). In the case of HO2, the best current theoretical estimate of the zero-point-inclusive, spin-orbit corrected atomization energy (Sigma D-0=166.0 +/- 0.3 kcal/mol) and the most recent Active Thermochemical Table (ATcT) value (165.97 +/- 0.06 kcal/mol) are in excellent agreement. For C-2 the agreement is only slightly poorer, with theory (D-0=143.7 +/- 0.3 kcal/mol) almost encompassing the most recent ATcT value (144.03 +/- 0.13 kcal/mol). For a larger collection of 68 molecules, a mean absolute deviation of 0.3 kcal/mol was found. The same high level of theory that produces good agreement for atomization energies also appears capable of predicting bond lengths to an accuracy of +/- 0.001 angstrom.
机译:从电子结构方法的潜在局限性出发,讨论了它们对分子特性预测中内在不确定性的贡献,并着重于雾化能量(或形成热),从中对其进行了讨论。通过两个案例研究说明了尝试实现高精度所带来的实际困难:碳二聚体(C-2)和氢过氧自由基(HO2)。虽然HO2波函数由单一构型控制,但是碳二聚体具有相当大的多构型特征。除了这两个分子之外,还将提供从“计算结果数据库”中提取的更大分子样本的统计结果。该分析的目标是确定结合簇理论与大型1粒子基集和仔细合并几个计算上昂贵的较小校正的组合是否可以产生与实验一致的一致性,从而优于“化学精度”(+/- 1 kcal / mol)。在HO2的情况下,包括零点在内的自旋轨道校正雾化能量(Sigma D-0 = 166.0 +/- 0.3 kcal / mol)的最新最佳理论估计值和最新的主动热化学表(ATcT)值(165.97 +/- 0.06 kcal / mol)非常一致。对于C-2,一致性仅稍差,理论值(D-0 = 143.7 +/- 0.3 kcal / mol)几乎涵盖了最新的ATcT值(144.03 +/- 0.13 kcal / mol)。对于更多的68个分子,发现平均绝对偏差为0.3 kcal / mol。产生原子能良好一致性的相同理论水平也似乎能够预测键长至+/- 0.001埃的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号