首页> 外文期刊>The Journal of Chemical Physics >Effect of the erbium dopant architecture on the femtosecond relaxation dynamics of silicon nanocrystals
【24h】

Effect of the erbium dopant architecture on the femtosecond relaxation dynamics of silicon nanocrystals

机译:do掺杂结构对硅纳米晶体飞秒弛豫动力学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Femtosecond pump-probe absorption spectroscopy is used to investigate the role of Er~(3+) dopants in the early relaxation pathways of photoexcited Si nanocrystals.The fate of photoexcited electrons in three different Si nanostructures was studied and correlated with the effect of Er-doping and the nature of the dopant architecture.In Si nanocrystals without Er~(3+) dopant,a trapping component was identified to be a major electron relaxation mechanism.Addition of Er~(3+) ions into the core or surface shell of the nanocrystals was found to open up additional nonradiative relaxation pathways,which is attributed to Er-induced trap states in the Si host.Analysis of the photodynamics of the Si nanocrystal samples reveals an electron trapping mechanism involving trap-to-trap hopping in the doped nanocrystals,whereby the density of deep traps seem to increase with the presence of erbium.To gain additional insights on the relative depths of the trapping sites on the investigated nanostructures,benzoquinone was used as a surface adsorbed electron acceptor to facilitate photoinduced electron transfer across the nanocrystal surface and subsequently assist in back electron transfer.The established reduction potential (-0.45 V versus SCE) of the electron acceptor helped reveal that the erbium-doped nanocrystal samples have deeper trapping sites than the undoped Si.Furthermore,the measurements indicate that internally Er-doped Si have relatively deeper trapping sites than the erbium surface-enriched nanocrystals.The electron-shuttling experiment also reveals that the back electron transfer seems not to recover completely to the ground state in the doped Si nanocrystals,which is explained by a mechanism whereby the electrons are captured by deep trapping sites induced by erbium addition in the Si lattice.
机译:飞秒泵浦探针吸收光谱法研究Er〜(3+)掺杂剂在光激发Si纳米晶体的早期弛豫路径中的作用。研究了三种不同Si纳米结构中光激发电子的命运,并将其与Er-(3+)的影响相关在没有Er〜(3+)掺杂剂的Si纳米晶体中,俘获组分被认为是主要的电子弛豫机理.Er〜(3+)离子被添加到硅的核或表面壳中纳米晶体被发现打开了额外的非辐射弛豫途径,这归因于Er诱导的硅主体中的陷阱态。对硅纳米晶体样品的光动力学分析表明,电子陷阱机理涉及掺杂中的陷阱到陷阱跳跃纳米晶体,因此深陷阱的密度似乎会随着the的存在而增加。要获得有关被调查纳米结构上陷阱位点相对深度的更多见解,苯醌被用作表面吸附电子受体,以促进光致电子在纳米晶体表面上的转移,并随后协助反向电子转移。电子受体的既定还原电位(相对于SCE为-0.45 V)有助于揭示掺-纳米晶体样品此外,测量结果表明,内部掺Er的硅的俘获位点比than表面富集的纳米晶体要深。电子穿梭实验还表明,反向电子传递似乎不能完全恢复。掺杂的Si纳米晶体中的基态变为基态,这可以通过一种机制来解释,其中电子被Si晶格中的addition添加引起的深俘获位点捕获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号